Predicted change in global secondary organic aerosol concentrations in response to future climate, emissions, and land use change

The sensitivity of secondary organic aerosol (SOA) concentration to changes in climate and emissions is investigated using a coupled global atmosphere-land model driven by the year 2100 IPCC A1B scenario predictions. The Community Atmosphere Model (CAM3) is updated with recent laboratory determined yields for SOA formation from monoterpene oxidation, isoprene photooxidation and aromatic photooxidation. Biogenic emissions of isoprene and monoterpenes are simulated interactively using the Model of Emissions of Gases and Aerosols (MEGAN2) within the Community Land Model (CLM3). The global mean SOA burden is predicted to increase by 36% in 2100, primarily the result of rising biogenic and anthropogenic emissions which independently increase the burden by 26% and 7%. The later includes enhanced biogenic SOA formation due to increased emissions of primary organic aerosol (5-25% increases in surface SOA concentrations in 2100). Climate change alone (via temperature, removal rates, and oxidative capacity) does not change the global mean SOA production, but the global burden increases by 6%. The global burden of anthropogenic SOA experiences proportionally more growth than biogenic SOA in 2100 from the net effect of climate and emissions (67% increase predicted). Projected anthropogenic land use change for 2100 (A2) is predicted to reduce the global SOA burden by 14%, largely the result of cropland expansion. South America is the largest global source region for SOA in the present day and 2100, but Asia experiences the largest relative growth in SOA production by 2100 because of the large predicted increases in Asian anthropogenic aromatic emissions. The projected decrease in global sulfur emissions implies that SOA will contribute a progressively larger fraction of the global aerosol burden.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

An edited version of this paper was published by AGU. Copyright 2008 American Geophysical Union.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Heald, C.
Henze, D.
Horowitz, Larry W.
Feddema, J.
Lamarque, Jean-François
Guenther, Alex B.
Hess, Peter
Vitt, Francis M.
Seinfeld, J.
Goldstein, A.
Fung, I.
Publisher UCAR/NCAR - Library
Publication Date 2008-03-11T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-17T15:59:18.093618
Metadata Record Identifier edu.ucar.opensky::articles:6494
Metadata Language eng; USA
Suggested Citation Heald, C., Henze, D., Horowitz, Larry W., Feddema, J., Lamarque, Jean-François, Guenther, Alex B., Hess, Peter, Vitt, Francis M., Seinfeld, J., Goldstein, A., Fung, I.. (2008). Predicted change in global secondary organic aerosol concentrations in response to future climate, emissions, and land use change. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d79p31vk. Accessed 03 August 2025.

Harvest Source