Unveiling ionospheric response to the May 2024 superstorm with low‐Earth‐orbit satellite observations

The space weather event on 10–11 May 2024 was a high‐impact geomagnetic storm, resulting in a SYM‐H index decrease to −518 nT, the lowest level registered in several decades. We investigated the response of the Earth's ionosphere during the main phase of this storm using a comprehensive data set of ionospheric observations (in situ plasma density and/or Total Electron Content (TEC)) from twenty Low‐Earth‐Orbit satellites such as COSMIC‐2, Swarm, GRACE‐FO, Spire, DMSP, and Jason‐3, orbiting at altitudes between 320 and 1,330 km. We found that ionospheric response followed a classical development pattern with the largest positive effects occurred at low and middle latitudes in daytime and evening sectors, associated with significant intensification of the Equatorial Ionization Anomaly (EIA) by the super fountain effect. The greatest effects occurred in the Pacific and American longitudinal sectors, which were in daylight, between 19 and 24 UT on 10 May 2024. This time overlaps with a period of steady southward IMF Bz and favorable conditions for long‐lasting penetration electric fields. The EIA crest‐to‐crest separation expanded to 40–60° in latitude with the largest poleward excursion of the crest to ∼27° magnetic latitude. The extreme EIA expansion with crest separation up to 60° in latitude along with a giant plasma bite‐out near the magnetic equator were observed in the dusk/evening sector over South America. The ground‐based TEC showed an enhancement up to ∼200 TECU, while satellites detected an increase in topside TEC up to ∼100–155 TECU, indicating key contribution of the topside ionosphere into the ground‐based TEC.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links

Related Dataset #1 : Geomagnetic Kp index

Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Zakharenkova, Irina
Cherniak, Iurii
Braun, John J.
Weiss, Jan-Peter
Wu, Qian
Van Hove, Teresa
Hunt, Douglas C.
Sleziak, Maggie
Publisher UCAR/NCAR - Library
Publication Date 2025-04-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-10T19:47:49.567626
Metadata Record Identifier edu.ucar.opensky::articles:43402
Metadata Language eng; USA
Suggested Citation Zakharenkova, Irina, Cherniak, Iurii, Braun, John J., Weiss, Jan-Peter, Wu, Qian, Van Hove, Teresa, Hunt, Douglas C., Sleziak, Maggie. (2025). Unveiling ionospheric response to the May 2024 superstorm with low‐Earth‐orbit satellite observations. UCAR/NCAR - Library. https://n2t.net/ark:/85065/d79z999r. Accessed 31 July 2025.

Harvest Source