Improved diagnosis of precipitation type with LightGBM machine learning

Existing precipitation-type algorithms have difficulty discerning the occurrence of freezing rain and ice pellets. These inherent biases are not only problematic in operational forecasting but also complicate the development of model-based precipitation-type climatologies. To address these issues, this paper introduces a novel light gradient-boosting machine (LightGBM)-based machine learning precipitation-type algorithm that utilizes reanalysis and surface observations. By comparing it with the Bourgouin precipitation-type algorithm as a baseline, we demonstrate that our algorithm improves the critical success index (CSI) for all examined precipitation types. Moreover, when compared with the precipitationtype diagnosis in reanalysis, our algorithm exhibits increased F1 scores for snow, freezing rain, and ice pellets. Subsequently, we utilize the algorithm to compute a freezing-rain climatology over the eastern United States. The resulting climatology pattern aligns well with observations; however, a significant mean bias is observed. We interpret this bias to be influenced by both the algorithm itself and assumptions regarding precipitation processes, which include biases associated with freezing drizzle, precipitation occurrence, and regional synoptic weather patterns. To mitigate the overall bias, we propose increasing the precipitation cutoff from 0.04 to 0.25 mm h-1, as it better reflects the precision of precipitation observations. This adjustment yields a substantial reduction in the overall bias. Finally, given the strong performance of LightGBM in predicting mixed precipitation episodes, we anticipate that the algorithm can be effectively utilized in operational settings and for diagnosing precipitation types in climate model outputs.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2024 American Meteorological Society (AMS).


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Zhuang, H.
Lehner, Flavio
DeGaetano, A. T.
Publisher UCAR/NCAR - Library
Publication Date 2024-03-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-10T20:03:48.466040
Metadata Record Identifier edu.ucar.opensky::articles:27087
Metadata Language eng; USA
Suggested Citation Zhuang, H., Lehner, Flavio, DeGaetano, A. T.. (2024). Improved diagnosis of precipitation type with LightGBM machine learning. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d7nz8ct1. Accessed 09 August 2025.

Harvest Source