Evaluation of the mountain hydroclimate across the Western United States in dynamically downscaled climate models

This study evaluates the ability of 15 CMIP6 global climate models (GCMs), dynamically downscaled to a 9-km grid, to effectively simulate the observed regional hydroclimate across the complex terrain of the western United States. The evaluation focuses on orographic precipitation, surface temperature, and snow water equivalent (SWE), evaluated over a 33-yr period (1981–2014) using gridded gauge- and station-based datasets and a snowpack reanalysis product. Additional comparisons are made against two ERA5-driven climate reconstructions: one at 9-km resolution, with the same physical choices, and one at 4-km resolution. The latter better captures the terrain and orographic processes and uses different physics. Model performance is evaluated in four geographic regions, and mountains are contrasted against the surrounding plains. The evaluation is challenged by the fact that gridded observational estimates of climate parameters in complex terrain have a poorly quantified uncertainty related to measurement and/or representativeness issues. The ensemble mean of the downscaled GCMs overestimates cold-season precipitation, its orographic enhancement, and peak SWE in the mountains. Its diurnal temperature cycle and its mountain–plain temperature contrast are suppressed, compared to observations: its temperature estimates err toward the mean on both sides of both distributions. But the same applies to the identically downscaled (9 km) ERA5, indicating that these biases are due to model physics, not a misrepresentation of the climate system. The 4-km ERA5-based reconstruction has smaller biases in terms of precipitation and temperature, especially over mountains, but underestimates SWE. Model performance differs between mountains and plains, and the differences vary by region.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2024 American Meteorological Society (AMS).


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Adhikari, P.
Geerts, B.
Rahimi-Esfarjani, S.
Smith, K.
Shuman, B. N.
Schneider, Timothy
Publisher UCAR/NCAR - Library
Publication Date 2024-12-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-10T19:56:24.216385
Metadata Record Identifier edu.ucar.opensky::articles:42363
Metadata Language eng; USA
Suggested Citation Adhikari, P., Geerts, B., Rahimi-Esfarjani, S., Smith, K., Shuman, B. N., Schneider, Timothy. (2024). Evaluation of the mountain hydroclimate across the Western United States in dynamically downscaled climate models. UCAR/NCAR - Library. https://n2t.net/ark:/85065/d7cj8jtg. Accessed 11 August 2025.

Harvest Source