A physical model for GPS multipath caused by land reflections: Toward bare soil moisture retrievals

Reflected Global Positioning System (GPS) signals can be used to infer information about soil moisture in the vicinity of the GPS antenna. Interference of direct and reflected signals causes the composite signal, observed using signal-to-noise ratio (SNR) data, to undulate with time while the GPS satellite ascends or descends at relatively low elevation angles. The soil moisture change affects both the phase of the SNR modulation pattern and its magnitude. In order to more thoroughly understand the mechanism of how the soil moisture change leads to a change in the SNR modulation, we built an electrodynamic model of GPS direct and reflected signal interference, i.e., multipath, that has a bare-soil model as the input and the total GPS received power as the output. This model treats soil as a continuously stratified medium with a specific composition of material ingredients having complex dielectric permittivity according to well-known mixing models. The critical part of this electrodynamic model is a numerical algorithm that allows us to calculate polarization-dependent reflection coefficients of such media with various profiles of dielectric permittivity dictated by the soil type and moisture. In this paper, we demonstrate how this model can reproduce and explain the main features of experimental multipath modulation patterns such as changes in phase and amplitude. We also discuss the interplay between true penetration depth and effective reflector depth. Based on these modeling comparisons, we formulate recommendations to improve the performance of bare soil moisture retrievals from the data obtained using GPS multipath modulation.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2009 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Zavorotny, V.
Larson, K.
Braun, John J.
Small, E.
Gutmann, Ethan D.
Bilich, A.
Publisher UCAR/NCAR - Library
Publication Date 2010-03-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-17T15:27:09.946516
Metadata Record Identifier edu.ucar.opensky::articles:18158
Metadata Language eng; USA
Suggested Citation Zavorotny, V., Larson, K., Braun, John J., Small, E., Gutmann, Ethan D., Bilich, A.. (2010). A physical model for GPS multipath caused by land reflections: Toward bare soil moisture retrievals. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d72v2hp9. Accessed 09 August 2025.

Harvest Source