Bridging 20 years of soil organic matter frameworks: Empirical support, model representation, and next steps

In the past few decades, there has been an evolution in our understanding of soil organic matter (SOM) dynamics from one of inherent biochemical recalcitrance to one deriving from plant-microbe-mineral interactions. This shift in understanding has been driven, in part, by influential conceptual frameworks which put forth hypotheses about SOM dynamics. Here, we summarize several focal conceptual frameworks and derive from them six controls related to SOM formation, (de)stabilization, and loss. These include: (a) physical inaccessibility; (b) organo-mineral and -metal stabilization; (c) biodegradability of plant inputs; (d) abiotic environmental factors; (e) biochemical reactivity and diversity; and (f) microbial physiology and morphology. We then review the empirical evidence for these controls, their model representation, and outstanding knowledge gaps. We find relatively strong empirical support and model representation of abiotic environmental factors but disparities between data and models for biochemical reactivity and diversity, organo-mineral and -metal stabilization, and biodegradability of plant inputs, particularly with respect to SOM destabilization for the latter two controls. More empirical research on physical inaccessibility and microbial physiology and morphology is needed to deepen our understanding of these critical SOM controls and improve their model representation. The SOM controls are highly interactive and also present some inconsistencies which may be reconciled by considering methodological limitations or temporal and spatial variation. Future conceptual frameworks must simultaneously refine our understanding of these six SOM controls at various spatial and temporal scales and within a hierarchical structure, while incorporating emerging insights. This will advance our ability to accurately predict SOM dynamics.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Rocci, K. S.
Cotrufo, M. F.
Ernakovich, J.
Foster, E.
Frey, S.
Georgiou, K.
Grandy, A. S.
Malhotra, A.
Reich, P. B.
Schlerman, E. P.
Wieder, William
Publisher UCAR/NCAR - Library
Publication Date 2024-06-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-10T20:01:49.549151
Metadata Record Identifier edu.ucar.opensky::articles:27269
Metadata Language eng; USA
Suggested Citation Rocci, K. S., Cotrufo, M. F., Ernakovich, J., Foster, E., Frey, S., Georgiou, K., Grandy, A. S., Malhotra, A., Reich, P. B., Schlerman, E. P., Wieder, William. (2024). Bridging 20 years of soil organic matter frameworks: Empirical support, model representation, and next steps. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d7tq65sg. Accessed 05 August 2025.

Harvest Source