Climate forcing and air quality change due to regional emissions reductions by economic sector

We examine the air quality (AQ) and radiative forcing (RF) response to emissions reductions by economic sector for North America and developing Asia in the CAM and GISS composition/climate models. Decreases in annual average surface particulate are relatively robust, with intermodel variations in magnitude typically <30% and very similar spatial structure. Surface ozone responses are small and highly model dependent. The largest net RF results from reductions in emissions from the North America industrial/power and developing Asia domestic fuel burning sectors. Sulfate reductions dominate the first case, for which intermodel variations in the sulfate (or total) aerosol optical depth (AOD) responses are ~30% and the modeled spatial patterns of the AOD reductions are highly correlated (R=0.9). Decreases in BC dominate the developing Asia domestic fuel burning case, and show substantially greater model-to-model differences. Intermodel variations in tropospheric ozone burden changes are also large, though aerosol changes dominate those cases with substantial net climate forcing. The results indicate that across-the-board emissions reductions in domestic fuel burning in developing Asia and in surface transportation in North America are likely to offer the greatest potential for substantial, simultaneous improvement in local air quality and near-term mitigation of global climate change via short-lived species. Conversely, reductions in industrial/power emissions have the potential to accelerate near-term warming, though they would improve AQ and have a long-term cooling effect on climate. These broad conclusions appear robust to intermodel differences.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright Authors 2008. This work is distributed under the Creative Commons Attribution 3.0 License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Shindell, D.
Lamarque, Jean-François
Unger, N.
Koch, D.
Faluvegi, G.
Bauer, S.
Ammann, M.
Cofala, J.
Teich, H.
Publisher UCAR/NCAR - Library
Publication Date 2008-12-08T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-17T15:54:53.889259
Metadata Record Identifier edu.ucar.opensky::articles:6351
Metadata Language eng; USA
Suggested Citation Shindell, D., Lamarque, Jean-François, Unger, N., Koch, D., Faluvegi, G., Bauer, S., Ammann, M., Cofala, J., Teich, H.. (2008). Climate forcing and air quality change due to regional emissions reductions by economic sector. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d7sj1ktz. Accessed 09 August 2025.

Harvest Source