Elucidating new particle formation in complex terrain during the winter 2022 Cold Fog Amongst Complex Terrain (CFACT) campaign

New particle formation (NPF) is a complex atmospheric phenomenon defined by the gas‐to‐particle conversion that leads to the sudden burst and growth in aerosol particles. Although chemical mechanisms for aerosol nucleation and growth are well established, the role of physical processes, such as turbulent mixing, within the atmospheric boundary layer (ABL) is beginning to emerge with recent studies. This study, based on the observations from the 2022 CFACT (Cold Fog Amongst Complex Terrain) field study in the Heber Valley of northern Utah, demonstrates an interconnection between turbulence and the occurrence of NPF. Using a spatially distributed boundary layer instrumentation, a novel feature of CFACT, three case studies depict unique boundary layer conditions that modulate the development of NPF characterized by sustained turbulence and weak intermittent turbulence. Quantitative analysis using in situ measurements and derived variables demonstrate that periods of weak intermittent turbulence hinder particle growth, whereas sustained turbulence helps modulate NPF. These findings provide new insights into the physical drivers of NPF, underscoring the role of turbulence in impacting particle formation with the ABL.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Carrillo‐Cardenas, G.
Hoch, S. W.
Pardyjak, E.
Garcia, M.
Brown, William O.J.
Pu, Z.
Hallar, A. G.
Publisher UCAR/NCAR - Library
Publication Date 2025-04-28T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-10T19:47:09.119981
Metadata Record Identifier edu.ucar.opensky::articles:43335
Metadata Language eng; USA
Suggested Citation Carrillo‐Cardenas, G., Hoch, S. W., Pardyjak, E., Garcia, M., Brown, William O.J., Pu, Z., Hallar, A. G.. (2025). Elucidating new particle formation in complex terrain during the winter 2022 Cold Fog Amongst Complex Terrain (CFACT) campaign. UCAR/NCAR - Library. https://n2t.net/ark:/85065/d7cz3ckh. Accessed 10 August 2025.

Harvest Source