Estimating ice content and extinction in precipitating cloud systems from CloudSat radar measurements

Relations between W band radar reflectivity and ice cloud water content and visible extinction coefficient are developed using a large microphysical data set. These relations are specifically tuned for CloudSat radar to derive ice content and optical thickness of ice parts of precipitating systems where other types of measurements have limitations. Accounting for nonsphericity is essential for larger particles, which produce higher reflectivities (Z e > 0 dBZ) and often dominate ice content of precipitating clouds. Typical values of median sizes in such clouds are about 1 - 2 mm, and they vary modestly. The modest particle size variability and strong non-Rayleigh scattering reduce data scatter in the derived relations and increase an exponent in best fit power law approximations for ice water content-reflectivity and extinction-reflectivity relations. The data scatter for high-reflectivity clouds is smaller than for low-reflectivity nonprecipitating clouds. It is about 33% for the reflectivity-ice water content relation, and it is about 50% for the reflectivity-extinction relation. For higher reflectivities, the temperature dependence of the ice water content-reflectivity relations is not very distinct, and uncertainties due to temperature variations are not expected to be high compared to possible errors due to particle shape variability. Uncertainties in particle aspect ratio, mass-size relation assumptions, and underrepresentation of smaller particles in samples can produce additional retrieval errors, so cloud ice content estimates can have uncertainties of about 50%, and extinction estimates can have uncertainties as large as a factor of 2.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2008 American Geophysical Union.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Matrosov, S.
Heymsfield, Andrew J.
Publisher UCAR/NCAR - Library
Publication Date 2008-08-09T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-17T15:56:35.438356
Metadata Record Identifier edu.ucar.opensky::articles:6403
Metadata Language eng; USA
Suggested Citation Matrosov, S., Heymsfield, Andrew J.. (2008). Estimating ice content and extinction in precipitating cloud systems from CloudSat radar measurements. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d72n52fv. Accessed 11 August 2025.

Harvest Source