Investigating the sources and atmospheric processing of fine particles from Asia and the Northwestern United States measured during INTEX B

During the National Aeronautics and Space Administration (NASA) Intercontinental Chemical Transport Experiment, Phase B (INTEX-B), in the spring of 2006, airborne measurements were made in the United States Pacific Northwest of the major inorganic ions and the water-soluble organic carbon (WSOC) of submicron (PM₁.₀) aerosol. An atmospheric trajectory (HYSPLIT) and a Lagrangian particle dispersion model (Flexpart) quantifying source contributions for carbon monoxide (CO) were used to segregate air masses into those of primarily Asian influence (>75% Asian CO) or North American influence (>75% North American CO). Of the measured compounds, fine particle mass mostly consisted of water-soluble organic carbon and sulfate, with median sulfate and WSOC concentrations in two to four times higher, respectively, in North American air masses versus transported Asian air masses. The fraction of WSOC to sulfate in transported Asian air masses was significantly lower than one at altitudes above 3 km due to depleted organic aerosol, opposite to what has been observed closer to Asia and in the northeastern United States, where organic components were at higher concentrations than sulfate in the free troposphere. The observations could be explained by loss of sulfate and organic aerosol by precipitation scavenging, with reformation of mainly sulfate during advection from Asia to North America. In contrast to free tropospheric measurements, for all air masses below approximately 2 km altitude median WSOC-sulfate ratios were consistently between one and two. WSOC sources were investigated by multivariate linear regression analyses of WSOC and volatile organic compounds (VOCs). In Asian air masses, of the WSOC variability that could be explained (49%), most was related to fossil fuel combustion VOCs, compared to North American air masses, where 75% of the WSOC variability was explained through a nearly equal combination of fossil fuel combustion and biogenic VOCs. Distinct WSOC plumes encountered during the experiment were also studied. A plume observed near the California Central Valley at 0.6 km altitude was related to both fossil fuel combustion and biogenic VOCs. Another Central Valley plume observed over Nevada at 3 to 5 km, in a region of cloud detrainment, was mostly related to biogenic VOCs.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright Authors 2008. This work is distributed under the Creative Commons Attribution 3.0 License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Peltier, R.
Hecobian, A.
Weber, R.
Stohl, A.
Atlas, Elliot
Riemer, D.
Blake, D.
Apel, Eric C.
Campos, Teresa
Karl, Thomas
Publisher UCAR/NCAR - Library
Publication Date 2008-03-27T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-17T15:59:05.543925
Metadata Record Identifier edu.ucar.opensky::articles:6437
Metadata Language eng; USA
Suggested Citation Peltier, R., Hecobian, A., Weber, R., Stohl, A., Atlas, Elliot, Riemer, D., Blake, D., Apel, Eric C., Campos, Teresa, Karl, Thomas. (2008). Investigating the sources and atmospheric processing of fine particles from Asia and the Northwestern United States measured during INTEX B. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d7p84c22. Accessed 08 August 2025.

Harvest Source