Leveraging a novel hybrid ensemble and optimal interpolation approach for enhanced streamflow and flood prediction

In the face of escalating instances of inland and flash flooding spurred by intense rainfall and hurricanes, the accurate prediction of rapid streamflow variations has become imperative. Traditional data assimilation methods face challenges during extreme rainfall events due to numerous sources of error, including structural and parametric model uncertainties, forcing biases, and noisy observations. This study introduces a cutting-edge hybrid ensemble and optimal interpolation data assimilation scheme tailored to precisely and efficiently estimate streamflow during such critical events. Our hybrid scheme uses an ensemble-based framework, integrating the flow-dependent background streamflow covariance with a climatological error covariance derived from historical model simulations. The dynamic interplay (weight) between the static background covariance and the evolving ensemble is adaptively computed both spatially and temporally. By coupling the National Water Model (NWM) configuration of the WRF-Hydro modeling system with the Data Assimilation Research Testbed (DART), we evaluate the performance of our hybrid prediction system using two impactful case studies: (1) West Virginia's flash flooding event in June 2016 and (2) Florida's inland flooding during Hurricane Ian in September 2022. Our findings reveal that the hybrid scheme substantially outperforms its ensemble counterpart, delivering enhanced streamflow estimates for both low and high flow scenarios, with an improvement of up to 50 %. This heightened accuracy is attributed to the climatological background covariance, mitigating bias and augmenting ensemble variability. The adaptive nature of the hybrid algorithm ensures reliability, even with a very small time-varying ensemble. Moreover, this innovative hybrid data assimilation system propels streamflow forecasts up to 18 h in advance of flood peaks, marking a substantial advancement in flood prediction capabilities.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author El Gharamti, Mohamad
RafieeiNasab, Arezoo
McCreight, James
Publisher UCAR/NCAR - Library
Publication Date 2024-07-19T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-10T20:00:18.804019
Metadata Record Identifier edu.ucar.opensky::articles:27392
Metadata Language eng; USA
Suggested Citation El Gharamti, Mohamad, RafieeiNasab, Arezoo, McCreight, James. (2024). Leveraging a novel hybrid ensemble and optimal interpolation approach for enhanced streamflow and flood prediction. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d7p273cv. Accessed 05 August 2025.

Harvest Source