Noah Land Surface Model modifications to improve snowpack prediction in the Colorado Rocky Mountains

Simulated snowpack by the Noah land surface model (LSM) shows an early depletion due to excessive sublimation and too early onset of snowmelt. To mitigate these deficiencies, five model modifications are tested to improve snowpack performance: (1) time-varying snow albedo, (2) solar radiation adjustment for terrain slope and orientation, (3) reducing the surface exchange coefficient for stable boundary layers, (4) increase of fresh snow albedo, and (5) adjusting surface roughness length when snow is present. The Noah LSM is executed from 1 November 2007 to 1 August 2008 for the headwater region in the Colorado Rocky Mountains with complex terrain, and its results are evaluated against 1 km Snow Data Assimilation System (SNODAS) output and individual Natural Resources Conservation Service Snowpack Telemetry (SNOTEL) sites. The most effective way to improve magnitude and timing of seasonal maximum snow water equivalent (SWE) is the introduction of the time-varying albedo formulation and the increase in fresh snow albedo. Minor improvement is obtained by reducing nighttime sublimation through adjusting the stable boundary layer surface exchange coefficient. Modifying the surface roughness length over snow surfaces and adding a terrain slope and orientation adjustment for radiation has little effect on average SWE conditions for the entire modeling domain, though it can have a significant effect in certain regions. The net effect of all changes is to improve the magnitude and timing of seasonal maximum SWE, but the snow period end is now somewhat too long. Adding the terrain slope and orientation effects does have an effect on local surface energy flux components depending on the cell slope and orientation.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

An edited version of this paper was published by AGU. Copyright 2010 American Geophysical Union.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Barlage, Michael
Chen, Fei
Tewari, Mukul
Ikeda, Kyoko
Gochis, David
Dudhia, Jimy
Rasmussen, Roy
Livneh, B.
Ek, Mike
Mitchell, K.
Publisher UCAR/NCAR - Library
Publication Date 2010-11-16T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:58:54.350474
Metadata Record Identifier edu.ucar.opensky::articles:17210
Metadata Language eng; USA
Suggested Citation Barlage, Michael, Chen, Fei, Tewari, Mukul, Ikeda, Kyoko, Gochis, David, Dudhia, Jimy, Rasmussen, Roy, Livneh, B., Ek, Mike, Mitchell, K.. (2010). Noah Land Surface Model modifications to improve snowpack prediction in the Colorado Rocky Mountains. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7xk8gtz. Accessed 21 June 2025.

Harvest Source