On the uncertainty of long-period return values of extreme daily precipitation

Methods for calculating return values of extreme precipitation and their uncertainty are compared using daily precipitation rates over the Western U.S. and Southwestern Canada from a large ensemble of climate model simulations. The roles of return-value estimation procedures and sample size in uncertainty are evaluated for various return periods. We compare two different generalized extreme value (GEV) parameter estimation techniques, namely L-moments and maximum likelihood (MLE), as well as empirical techniques. Even for very large datasets, confidence intervals calculated using GEV techniques are narrower than those calculated using empirical methods. Furthermore, the more efficient L-moments parameter estimation techniques result in narrower confidence intervals than MLE parameter estimation techniques at small sample sizes, but similar best estimates. It should be noted that we do not claim that either parameter fitting technique is better calibrated than the other to estimate long period return values. While a non-stationary MLE methodology is readily available to estimate GEV parameters, it is not for the L-moments method. Comparison of uncertainty quantification methods are found to yield significantly different estimates for small sample sizes but converge to similar results as sample size increases. Finally, practical recommendations about the length and size of climate model ensemble simulations and the choice of statistical methods to robustly estimate long period return values of extreme daily precipitation statistics and quantify their uncertainty.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Wehner, M. F.
Duffy, Margaret
Risser, M.
Paciorek, C. J.
Stone, D. A.
Pall, P.
Publisher UCAR/NCAR - Library
Publication Date 2024-03-15T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-10T20:03:31.657883
Metadata Record Identifier edu.ucar.opensky::articles:27105
Metadata Language eng; USA
Suggested Citation Wehner, M. F., Duffy, Margaret, Risser, M., Paciorek, C. J., Stone, D. A., Pall, P.. (2024). On the uncertainty of long-period return values of extreme daily precipitation. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d7fb5746. Accessed 09 August 2025.

Harvest Source