Optimization of an enclosed gas analyzer sampling system for measuring eddy covariance fluxes of H₂O and CO₂

Several initiatives are currently emerging to observe the exchange of energy and matter between the earth's surface and atmosphere standardized over larger space and time domains. For example, the National Ecological Observatory Network (NEON) and the Integrated Carbon Observing System (ICOS) are set to provide the ability of unbiased ecological inference across ecoclimatic zones and decades by deploying highly scalable and robust instruments and data processing. In the construction of these observatories, enclosed infrared gas analyzers are widely employed for eddy covariance applications. While these sensors represent a substantial improvement compared to their open- and closed-path predecessors, remaining high-frequency attenuation varies with site properties and gas sampling systems, and requires correction. Here, we show that components of the gas sampling system can substantially contribute to such high-frequency attenuation, but their effects can be significantly reduced by careful system design. From laboratory tests we determine the frequency at which signal attenuation reaches 50 % for individual parts of the gas sampling system. For different models of rain caps and particulate filters, this frequency falls into ranges of 2.5-16.5 Hz for CO₂, 2.4-14.3 Hz for H₂O, and 8.3-21.8 Hz for CO₂, 1.4-19.9 Hz for H2O, respectively. A short and thin stainless steel intake tube was found to not limit frequency response, with 50 % attenuation occurring at frequencies well above 10 Hz for both H₂O and CO₂. From field tests we found that heating the intake tube and particulate filter continuously with 4 W was effective, and reduced the occurrence of problematic relative humidity levels (RH  > 60 %) by 50 % in the infrared gas analyzer cell. No further improvement of H₂O frequency response was found for heating in excess of 4 W. These laboratory and field tests were reconciled using resistor-capacitor theory, and NEON's final gas sampling system was developed on this basis. The design consists of the stainless steel intake tube, a pleated mesh particulate filter and a low-volume rain cap in combination with 4 W of heating and insulation. In comparison to the original design, this reduced the high-frequency attenuation for H₂O by  ≈ 3∕4, and the remaining cospectral correction did not exceed 3 %, even at high relative humidity (95 %). The standardized design can be used across a wide range of ecoclimates and site layouts, and maximizes practicability due to minimal flow resistance and maintenance needs. Furthermore, due to minimal high-frequency spectral loss, it supports the routine application of adaptive correction procedures, and enables largely automated data processing across sites.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright Author(s) 2016. This work is distributed under the Creative Commons Attribution 3.0 License


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Metzger, S.
Burba, G.
Burns, Sean
Blanken, P.
Li, J.
Luo, H.
Zulueta, R.
Publisher UCAR/NCAR - Library
Publication Date 2016-03-31T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-11T20:49:57.230816
Metadata Record Identifier edu.ucar.opensky::articles:18433
Metadata Language eng; USA
Suggested Citation Metzger, S., Burba, G., Burns, Sean, Blanken, P., Li, J., Luo, H., Zulueta, R.. (2016). Optimization of an enclosed gas analyzer sampling system for measuring eddy covariance fluxes of H₂O and CO₂. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d72z174g. Accessed 02 August 2025.

Harvest Source