The role of antecedent southwest summer monsoon rainfall on the occurrence of premonsoon heat waves over India in the present global warming era

Global warming has significantly increased the risk of heat waves (HWs) globally, with India being particularly vulnerable during the summer months (March-June; MAMJ). This study investigated the critical relationship between Indian summer monsoon rainfall (ISMR) and the occurrence of premonsoon HWs in subsequent years across the Indian subcontinent. It has been hypothesized that droughts during the ISMR could lead to more frequent HWs in the following MAMJ period. Using the Indian Meteorological Department's (IMD) gridded observed surface air daily maximum temperature (Tmax) dataset for the period 1951–2023, we analyzed the climatic patterns, interannual variability (IAV), and coefficient of variation (CV) of Tmax across India. The analysis compares two distinct periods: 1951–1999 (P1) and 2000–2023 (P2), with focus on Tmax trends and HW duration, distinguishing between short-duration HWs (SHWs, 2 days) and long-duration HWs (LHWs, 5 days or more). A key purpose of this study is to examine the relationship between the preceding all India summer monsoon rainfall (AISMR) and the occurance of various types of HW in the subsequent premonsoon season. In particular extreme AISMR events, such as droughts or excess rainfall, influence HW occurrence. The findings reveal a significant rise in Tmax across many regions of India during the MAMJ period, with the highest temperatures (> 37 °C) observed in northwestern, central, and eastern coastal areas. Northern India, particularly the Himalayan region, exhibits a greater interannual variability in Tmax, with June showing the most pronounced fluctuations. The study also highlights an increase in the frequency and intensity of HWs, especially in central and southern India, with the Chandigarh-Haryana-Delhi region recording the highest occurrences. A critical finding is the strong inverse relationship between the AISMR and conditions in the subsequent premonsoon season. Specifically, drought in the antecedent AISMR results in reduced soil moisture, which is strongly associated with higher premonsoon Tmax and an increased frequency of extreme heat events across India, particularly in regions prone to severe heat during this season. Drought conditions during AISMR are closely linked to higher HW frequencies in the following summer, especially in the central, northeast-central, and east-coastal regions. The frequencies of HW days, SHWs, and LHWs are significantly greater in years following AISMR droughts than in those following excess rainfall, indicating that drought years are more likely to lead to widespread HW activity. Despite the overall warming trends, some regions, such as the Indo-Gangetic Plain and parts of the Himalayan region, show cooling trends, although these trends are less widespread. The onset of the monsoon in June tends to reduce the intensity and spatial extent of warming, particularly in the central and eastern coastal regions, although significant HW trends persist in northwestern India and along the east coast. This study underscores the crucial role of AISMR in influencing HW events across India and highlights the need for adaptive strategies that account for the interactions between monsoon rainfall and HW risk, providing valuable insights for mitigating the impacts of HWs in the context of global warming.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Malasala, Murali Nageswara Rao
Joseph, S.
Mandal, R.
Tallapragada, V.
Akhter, J.
Dey, A.
Chattopadhyay, R.
Phani, R.
A.K. Sahai
Publisher UCAR/NCAR - Library
Publication Date 2024-11-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-10T19:57:51.153689
Metadata Record Identifier edu.ucar.opensky::articles:41964
Metadata Language eng; USA
Suggested Citation Malasala, Murali Nageswara Rao, Joseph, S., Mandal, R., Tallapragada, V., Akhter, J., Dey, A., Chattopadhyay, R., Phani, R., A.K. Sahai. (2024). The role of antecedent southwest summer monsoon rainfall on the occurrence of premonsoon heat waves over India in the present global warming era. UCAR/NCAR - Library. https://n2t.net/ark:/85065/d73r0z5g. Accessed 10 August 2025.

Harvest Source