Water and energy budgets of hurricanes and implications for climate change

On the basis of simulations of hurricane Katrina in August 2005 with the advanced Weather and Research Forecasting (WRF) model at 4 km resolution without parameterized convection, empirical relationships are computed between the maximum simulated wind and the surface fluxes and precipitation and provide a reasonable fit to the data. The best track data set of global observed tropical cyclones is used to estimate the frequency that storms of a given strength occur over the globe after 1970. For 1990--2005 the total surface heat loss by the tropical ocean in hurricanes category 1 to 5 within 400 km of the center of the storms is estimated to be about 0.53 × 1022 J a⁻¹ (where a is year) (0.17 PW). The enthalpy loss due to hurricanes computed on the basis of precipitation is about a factor of 3.4 greater (0.58 PW), owing to the addition of the surface fluxes from outside 400 km radius and moisture convergence into the storms typically from as far from the eye as 1600 km. Globally these values correspond to 0.33 W m⁻² for evaporation, or 1.13 W m⁻² for precipitation. Changes over time reflect basin differences and a prominent role for El Niño, and the most active period globally was 1989 to 1997. Strong positive trends from 1970 to 2005 occur in these inferred surface fluxes and precipitation arising from increases in intensity of storms and also higher sea surface temperatures. Confidence in this result is limited by uncertainties in the best track tropical cyclone data. Nonetheless, the results highlight the importance of surface energy exchanges in global energetics of the climate system and are suggestive of the deficiencies in climate models owing to their inadequate representation of hurricanes.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2007 American Geophysical Union.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Trenberth, Kevin E.
Fasullo, John T.
Publisher UCAR/NCAR - Library
Publication Date 2007-12-12T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-17T16:00:30.721034
Metadata Record Identifier edu.ucar.opensky::articles:6616
Metadata Language eng; USA
Suggested Citation Trenberth, Kevin E., Fasullo, John T.. (2007). Water and energy budgets of hurricanes and implications for climate change. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d7jm29tj. Accessed 11 August 2025.

Harvest Source