A dual-pass variational data assimilation framework for estimating soil moisture profiles from AMSR-E microwave brightness temperature

To overcome the difficulties in determining the optimal parameters needed for a radiative transfer model (RTM), which acts as the observational operator in a land data assimilation system, we have designed a dual-pass assimilation (DP-En4DVar) framework to optimize the model state (volumetric soil moisture content) and model parameters simultaneously using the gridded Advanced Microwave Scanning Radiometer-EOS (AMSR-E) satellite brightness temperature data. This algorithm embeds a dual-pass (the state assimilation pass and the parameter optimization pass) optimization technique based on an ensemble-based four-dimensional variational assimilation method and a shuffled complex evolution approach (SCE-UA). The SCE-UA method optimizes the parameters using observational information, thereby leading to improved simulations. The RTM is used to estimate brightness temperature from surface temperature and soil moisture. This algorithm is implemented differently in two phases: the parameter calibration phase and the pure assimilation phase. Both passes are applied in each assimilation time window during the parameter calibration phase. However, only the state assimilation pass is used in the pure assimilation phase after the parameters are determined during the parameter calibration phase. Several experiments conducted using this framework coupled partially with a land surface model (the NCAR CLM3) show that volumetric soil moisture content can be significantly improved to be comparable with in situ observations by assimilating only daily satellite brightness temperature. Furthermore, the improvement in surface soil moisture also propagates to lower layers where no observations are available.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

An edited version of this paper was published by AGU. Copyright 2009 American Geophysical Union.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Tian, Xiangjun
Tie, Zhenghui
Dai, Aiguo
Shi, Chunxiang
Jia, Binghao
Chen, Feng
Yang, Kun
Publisher UCAR/NCAR - Library
Publication Date 2009-08-21T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:43:46.683620
Metadata Record Identifier edu.ucar.opensky::articles:15287
Metadata Language eng; USA
Suggested Citation Tian, Xiangjun, Tie, Zhenghui, Dai, Aiguo, Shi, Chunxiang, Jia, Binghao, Chen, Feng, Yang, Kun. (2009). A dual-pass variational data assimilation framework for estimating soil moisture profiles from AMSR-E microwave brightness temperature. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d79z95x5. Accessed 19 June 2025.

Harvest Source