A scalable RBF--FD method for atmospheric flow

Radial basis function-generated finite difference (RBF--FD) methods have recently been proposed as very interesting for global scale geophysical simulations, and have been shown to outperform established pseudo-spectral and discontinuous Galerkin methods for shallow water test problems. In order to be competitive for very large scale simulations, the RBF--FD methods needs to be efficiently implemented for modern multicore based computer architectures. This is a challenging assignment, because the main computational operations are unstructured sparse matrix-vector multiplications, which in general scale poorly on multicore computers due to bandwidth limitations. However, with the task parallel implementation described here we achieve 60-100% of theoretical speedup within a shared memory node, and 80-100% of linear speedup across nodes. We present results for global shallow water benchmark problems with a 30 km resolution.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2015 Elsevier.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Tillenius, M.
Larsson, E.
Lehto, E.
Flyer, Natasha
Publisher UCAR/NCAR - Library
Publication Date 2015-10-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-11T20:54:23.810047
Metadata Record Identifier edu.ucar.opensky::articles:16898
Metadata Language eng; USA
Suggested Citation Tillenius, M., Larsson, E., Lehto, E., Flyer, Natasha. (2015). A scalable RBF--FD method for atmospheric flow. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d76111j9. Accessed 21 August 2025.

Harvest Source