Algorithm for determining the statistical properties of cloud particles through in situ ensemble measurements

An algorithm is described for inverting individual particle properties from statistics of ensemble observations, thereby dispelling the notion that coincident particles create inherently erroneous data in particle probes. The algorithm assumes that the observed property obeys superposition, that the particles are independently randomly distributed in space, and that the particle distribution is stationary over the accumulation distance. The fundamental principle of the algorithm is based on a derived analytical relationship between ensemble and individual particle statistics with fully defined derivatives. This enables rapid convergence of forward inversions. Furthermore, this relationship has no dependence on the particular instrument realization, so the accuracy of the relationship is not fundamentally constrained by the accuracy to which a measurement system can be characterized or modeled. This algorithm is presented in terms of a single observed property, but the derivation is valid for correlated multiparameter retrievals. Because data are collected in histograms, this technique would require relatively little storage and network bandwidth on an aircraft data system. This statistical analysis is derived here for measuring particle geometric extinction cross sections, but it could also be applied to other particle properties, such as scattering cross-section and phase matrix elements. In this example application, a simulated beam passes through a sampled environment onto a single detector to periodically measure beam extinction. This measured extinction may be the result of one or more particles, but it is shown that the probability distribution function of the ensemble (multiparticle) extinction measurement can be used to obtain the distribution of individual particle extinction cross sections (used here as a proxy for particle size distribution).

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2016 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Hayman, Matthew
Publisher UCAR/NCAR - Library
Publication Date 2016-09-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:25:41.132515
Metadata Record Identifier edu.ucar.opensky::articles:18703
Metadata Language eng; USA
Suggested Citation Hayman, Matthew. (2016). Algorithm for determining the statistical properties of cloud particles through in situ ensemble measurements. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7t72k34. Accessed 23 June 2025.

Harvest Source