An analysis of the momentum forcing in the high-latitude lower thermosphere

We analyze the dynamics of the high-latitude thermsopheric wind system below 170 km for negative IMF B z by using a fully nonlinear model with a realistic distribution of the forcing. A transition of the forcing patterns and their relative contribution to the high-latitude lower thermospheric wind system occurs around 123 km under various conditions, weak or strong IMF, summer or winter. Winds around and above 123 km are sustained by the gradient-wind balance among divergent/convergent pressure gradient, Coriolis, and horizontal momentum advection (mainly centrifugal) accelerations. Below 123 km winds are maintained by the approximate balance of divergent/convergent pressure gradient, Coriolis, and Hall ion drag accelerations through modified geostrophy. The dominant contribution to the wind tendency (time rate of change) is the rotational component of the ion drag acceleration. The wind tendency above 123 km tends to resemble rotational Pedersen ion drag acceleration well, which reflects a rotated pattern of the E × B velocity. Near and below 123 km the wind tendency is also affected by the rotational component of the Hall ion drag acceleration whose pattern no longer closely resembles the pattern of the E × B velocity, and the wind pattern can differ significantly from that well above 123 km. Simulations for different strengths of the IMF and different seasons indicate that largely divergent/convergent Coriolis and horizontal momentum advection accelerations tend approximately to balance with the horizontal pressure gradient (as well as with divergent/convergent ion drag at lower altitudes) under various conditions. As the forcing increases the radius of curvature of the strong winds also tends to increase, so that the centrifugal acceleration does not increase quadratically with the maximum wind speed, and the tendency for a rough balance between the Coriolis and horizontal momentum advection accelerations in the duskside vortex above 123 km is maintained.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2007 American Geophysical Union.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Kwak, Young-Sil
Richmond, Arthur
Publisher UCAR/NCAR - Library
Publication Date 2007-01-26T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:39:01.493782
Metadata Record Identifier edu.ucar.opensky::articles:6933
Metadata Language eng; USA
Suggested Citation Kwak, Young-Sil, Richmond, Arthur. (2007). An analysis of the momentum forcing in the high-latitude lower thermosphere. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7kw5g8n. Accessed 29 June 2025.

Harvest Source