Benchmarking simulated precipitation variability amplitude across time scales

Objective performance metrics that measure precipitation variability across time scales from subdaily to interannual are presented and applied to Historical simulations of Coupled Model Intercomparison Project phase 5 and 6 (CMIP5 and CMIP6) models. Three satellite-based precipitation estimates (IMERG, TRMM, and CMORPH) are used as reference data. We apply two independent methods to estimate temporal variability of precipitation and compare the consistency in their results. The first method is derived from power spectra analysis of 3-hourly precipitation, measuring forced variability by solar insolation (diurnal and annual cycles) and internal variability at different time scales (subdaily, synoptic, subseasonal, seasonal, and interannual). The second method is based on time averaging and facilitates estimating the seasonality of subdaily variability. Supporting the robustness of our metric, we find a near equivalence between the results obtained from the two methods when examining simulated-to-observed ratios over large domains (global, tropics, extratropics, land, or ocean). Additionally, we demonstrate that our model evaluation is not very sensitive to the discrepancies between observations. Our results reveal that CMIP5 and CMIP6 models in general overestimate the forced variability while they underestimate the internal variability, especially in the tropical ocean and higher-frequency variability. The underestimation of subdaily variability is consistent across different seasons. The internal variability is overall improved in CMIP6, but remains underestimated, and there is little evidence of improvement in forced variability. Increased horizontal resolution results in some improvement of internal variability at subdaily and synoptic time scales, but not at longer time scales.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2022 American Meteorological Society (AMS).


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Ahn, Min-Seop
Gleckler, Peter J.
Lee, Jiwoo
Pendergrass, Angeline G.
Jakob, Christian
Publisher UCAR/NCAR - Library
Publication Date 2022-10-15T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:41:36.651816
Metadata Record Identifier edu.ucar.opensky::articles:25903
Metadata Language eng; USA
Suggested Citation Ahn, Min-Seop, Gleckler, Peter J., Lee, Jiwoo, Pendergrass, Angeline G., Jakob, Christian. (2022). Benchmarking simulated precipitation variability amplitude across time scales. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d75t3qb8. Accessed 19 June 2025.

Harvest Source