GPS radio occultation for climate monitoring and change detection

Observation of the atmospheric climate and detection of changes require high quality data. Radio Occultation (RO) using Global Positioning System (GPS) signals is based on time measurements with precise atomic clocks. It provides a long-term stable and consistent data record with global coverage and favorable error characteristics. Highest quality and vertical resolution is given in the upper troposphere and lower stratosphere (UTLS). RO data exist from the GPS/Met mission within 1995-1997, and continuous observations are available since 2001. We give a review on studies using RO data for climate monitoring and change detection in the UTLS and discuss RO characteristics and error estimates, climate change indicators, trend detection, and comparison to conventional upper-air data. These studies showed that RO parameters cover the whole UTLS with useful indicators of climate change, being most robust in the tropics. Refractivity is most sensitive in the lower stratosphere (LS) and tropopause region, pressure/geopotential height and temperature over the UTLS region. An emerging climate change signal in the RO record can be detected for geopotential height of pressure levels and for temperature, reflecting warming of the troposphere and cooling of the LS. The results are in agreement with trends in radiosonde and ERA-Interim records. Climate model trends basically agree as well but they show less warming/cooling contrast across the tropical tropopause. (Advanced) Microwave Sounding Unit LS bulk temperature anomalies show significant differences to RO. Overall, the quality of RO climate records is suitable to fulfill the requirements of a global climate change monitoring system.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2011 American Geophysical Union.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Steiner, A.
Lackne, B.
Ladstädter, F.
Scherllin-Pirscher, Barbara
Foelsche, U.
Kirchengast, G.
Publisher UCAR/NCAR - Library
Publication Date 2011-11-17T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:12:06.943785
Metadata Record Identifier edu.ucar.opensky::articles:12064
Metadata Language eng; USA
Suggested Citation Steiner, A., Lackne, B., Ladstädter, F., Scherllin-Pirscher, Barbara, Foelsche, U., Kirchengast, G.. (2011). GPS radio occultation for climate monitoring and change detection. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d78w3f03. Accessed 30 June 2025.

Harvest Source