Ground observation and AMIE-TIEGCM modeling of a storm-time traveling ionospheric disturbance

This paper reports the first comparison between comprehensive observations of equatorward moving traveling ionospheric disturbance at midlatitudes and thermospheric general circulation model with high-latitude energy input based on data assimilation. A prominent traveling ionospheric disturbance (TID) was observed during the major magnetic storm of 31 March 2001. The TID propagated from north to south over Japan with phase speeds of 370-640 m/s. The assimilative mapping of ionospheric electrodynamics (AMIE) technique was used as input to the thermosphere-ionosphere-electrodynamics general circulation model (TIEGCM) to investigate generation and propagation of the observed TID. In the model, two Joule heating enhancements in the high-latitude dayside sector produced two distinct traveling atmospheric waves (TADs), which propagated to Japan in the midnight sector as enhancements in thermospheric temperature and southward wind speed. The phase speed of the TADs was much faster (∼1100 m/s) in the model, probably due to the overestimation of Joule heating in the model. The second TAD corresponds to the observed prominent TID, while signatures of the first TAD were also seen in the observed ionosonde data. The observed TID was characterized by a decrease in southward wind speed, causing a significant F-layer height decrease and a temporal enhancement of F-layer peak density. These characteristics were reproduced by the model as a rarefaction of the second TAD. The temporal enhancement of F-layer peak density was because of the vertical shear of meridional wind. The absolute value of F-layer electron density in the model was several factors smaller than that observed, probably because of the underestimation of the supply of O+ ions from the plasmasphere.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2007 American Geophysical Union.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Shiokawa, K.
Lu, Gang
Otsuka, Y.
Ogawa, T.
Yamamoto, M.
Nishitani, N.
Sato, N.
Publisher UCAR/NCAR - Library
Publication Date 2007-05-18T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-17T17:01:57.472305
Metadata Record Identifier edu.ucar.opensky::articles:6671
Metadata Language eng; USA
Suggested Citation Shiokawa, K., Lu, Gang, Otsuka, Y., Ogawa, T., Yamamoto, M., Nishitani, N., Sato, N.. (2007). Ground observation and AMIE-TIEGCM modeling of a storm-time traveling ionospheric disturbance. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d7fj2h0n. Accessed 31 July 2025.

Harvest Source