On the relationship between regional ocean heat content and sea surface height

An accurate diagnosis of ocean heat content (OHC) is essential for interpreting climate variability and change, as evidenced, for example, by the broad range of hypotheses that exists for explaining the recent hiatus in global mean surface warming. Potential insights are explored here by examining relationships between OHC and sea surface height (SSH) in observations and two recently available large ensembles of climate model simulations from the mid-twentieth century to 2100. It is found that in decadal-length observations and a model control simulation with constant forcing, strong ties between OHC and SSH exist, with little temporal or spatial complexity. Agreement is particularly strong on monthly to interannual time scales. In contrast, in forced transient warming simulations, important dependencies in the relationship exist as a function of region and time scale. Near Antarctica, low-frequency SSH variability is driven mainly by changes in the circumpolar current associated with intensified surface winds, leading to correlations between OHC and SSH that are weak and sometimes negative. In subtropical regions, and near other coastal boundaries, negative correlations are also evident on long time scales and are associated with the accumulated effects of changes in the water cycle and ocean dynamics that underlie complexity in the OHC relationship to SSH. Low-frequency variability in observations is found to exhibit similar negative correlations. Combined with altimeter data, these results provide evidence that SSH increases in the Indian and western Pacific Oceans during the hiatus are suggestive of substantial OHC increases. Methods for developing the applicability of altimetry as a constraint on OHC more generally are also discussed.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2017 American Meteorological Society (AMS).


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Fasullo, John T.
Gent, Peter R.
Publisher UCAR/NCAR - Library
Publication Date 2017-11-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T19:15:42.025114
Metadata Record Identifier edu.ucar.opensky::articles:21194
Metadata Language eng; USA
Suggested Citation Fasullo, John T., Gent, Peter R.. (2017). On the relationship between regional ocean heat content and sea surface height. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7s46vkw. Accessed 26 June 2025.

Harvest Source