Relative importance of nitric oxide physical drivers in the lower thermosphere

Nitric oxide (NO) observations from the Solar Occultation for Ice Experiment and Student Nitric Oxide Explorer satellite instruments are investigated to determine the relative importance of drivers of short-term NO variability. We study the variations of deseasonalized NO anomalies by removing a climatology, which explains between approximately 70% and 90% of the total NO budget, and relate them to variability in geomagnetic activity and solar radiation. Throughout the lower thermosphere geomagnetic activity is the dominant process at high latitudes, while in the equatorial region solar radiation is the primary source of short-term NO changes. Consistent results are obtained on estimated geomagnetic and radiation contributions of NO variations in the two data sets, which are nearly a decade apart in time. The analysis presented here can be applied to model simulations of NO to investigate the accuracy of the parametrized physical drivers.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright Author(s) 2017. This work is distributed under the Creative Commons Attribution 3.0 License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Hendrickx, K.
Megner, L.
Marsh, Daniel
Gumbel, J.
Strandberg, R.
Martinsson, F.
Publisher UCAR/NCAR - Library
Publication Date 2017-10-14T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-11T19:45:08.826644
Metadata Record Identifier edu.ucar.opensky::articles:21153
Metadata Language eng; USA
Suggested Citation Hendrickx, K., Megner, L., Marsh, Daniel, Gumbel, J., Strandberg, R., Martinsson, F.. (2017). Relative importance of nitric oxide physical drivers in the lower thermosphere. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d7125w7x. Accessed 05 August 2025.

Harvest Source