Wave boundary layer turbulence over surface waves in a strongly forced condition

Accurate predictions of the sea state-dependent air-sea momentum flux require a thorough understanding of the wave boundary layer turbulence over surface waves. A set of momentum and energy equations is derived to formulate and analyze wave boundary layer turbulence. The equations are written in wave-following coordinates, and all variables are decomposed into horizontal mean, wave fluctuation, and turbulent fluctuation. The formulation defines the wave-induced stress as a sum of the wave fluctuation stress (because of the fluctuating velocity components) and a pressure stress (pressure acting on a tilted surface). The formulations can be constructed with different choices of mapping. Next, a large-eddy simulation result for wind over a sinusoidal wave train under a strongly forced condition is analyzed using the proposed formulation. The result clarifies how surface waves increase the effective roughness length and the drag coefficient. Specifically, the enhanced wave-induced stress close to the water surface reduces the turbulent stress (satisfying the momentum budget). The reduced turbulent stress is correlated with the reduced viscous dissipation rate of the turbulent kinetic energy. The latter is balanced by the reduced mean wind shear (satisfying the energy budget), which causes the equivalent surface roughness to increase. Interestingly, there is a small region farther above where the turbulent stress, dissipation rate, and mean wind shear are all enhanced. The observed strong correlation between the turbulent stress and the dissipation rate suggests that existing turbulence closure models that parameterize the latter based on the former are reasonably accurate.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2015 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Hara, Tetsu
Sullivan, Peter
Publisher UCAR/NCAR - Library
Publication Date 2015-03-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:43:56.233714
Metadata Record Identifier edu.ucar.opensky::articles:16578
Metadata Language eng; USA
Suggested Citation Hara, Tetsu, Sullivan, Peter. (2015). Wave boundary layer turbulence over surface waves in a strongly forced condition. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7hx1dvn. Accessed 18 June 2025.

Harvest Source