Will perturbing soil moisture improve warm-season ensemble forecasts? A proof of concept

Current generation short-range ensemble forecast members tend to be unduly similar to each other, especially for components such as surface temperature and precipitation. One possible cause of this is a lack of perturbations to the land surface state. In this experiment, a two-member ensemble of the Advanced Research Weather Research and Forecasting (WRF) model (ARW) was run from two different soil moisture analyses. One-day forecasts were conducted for six warm-season cases over the central United States with moderate soil moistures, both with explicit convection at 5-km grid spacing and with parameterized convection at 20-km grid spacing. Since changing the convective parameterization has previously been demonstrated to cause significant differences between ensemble forecast members, 20-km simulations were also conducted that were initialized with the same soil moisture but that used two different convective parameterizations as a reference. At 5 km, the forecast differences due to changing the soil moisture were comparable to the differences in 20-km simulations with the same soil moisture but with a different convective parameterization. The differences of 20-km simulations from different soil moistures were occasionally large but typically smaller than the differences from changing the convective parameterization. Thus, perturbing the state of the land surface for this version of WRF/ARW was judged to be likely to increase the spread of warm-season operational short-range ensemble forecasts of precipitation and surface temperature when soil moistures are moderate in value, especially if the ensemble is comprised of high-resolution members with explicit convection.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2006 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Sutton, C.
Hamill, T.
Warner, Thomas
Publisher UCAR/NCAR - Library
Publication Date 2006-11-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:27:58.160052
Metadata Record Identifier edu.ucar.opensky::articles:9222
Metadata Language eng; USA
Suggested Citation Sutton, C., Hamill, T., Warner, Thomas. (2006). Will perturbing soil moisture improve warm-season ensemble forecasts? A proof of concept. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7zs2x88. Accessed 29 June 2025.

Harvest Source