Application of an adiabatic WRF adjoint to the investigation of the May 2004 McMurdo, Antarctica, severe wind event

The tangent linear and adjoint of an adiabatic version of the Weather Research and Forecasting (WRF) Model with its Advanced Research WRF (ARW) dynamic core have been developed. The source-to-source automatic differentiation tool [i.e., the Transformation of Algorithm (TAF) in FORTRAN] was used in the development. Tangent linear and adjoint checks of the developed adiabatic WRF adjoint modeling system (WAMS) were conducted, and all necessary correctness verification procedures were passed. As the first application, the adiabatic WAMS was used to study the adjoint sensitivity of a severe windstorm in Antarctica. Linearity tests indicated that an adjoint-based sensitivity study with the Antarctic Mesoscale Prediction System (AMPS) 90-km domain configuration for the windstorm is valid up to 24 h. The adjoint-based sensitivity calculation with adiabatic WAMS identified sensitive regions for the improvement of the 24-h forecast of the windstorm. It is indicated that the windstorm forecast largely relies on the model initial conditions in the area from the south part of the Trans-Antarctic Mountains to West Antarctica and between the Ross Ice Shelf and the South Pole. Based on the sensitivity analysis, the southerly or southeasterly wind at lower levels in the sensitivity region should be larger, the cyclone should be stronger, and the atmospheric stratification should be more stable over the north slope of the Trans-Antarctic Mountain to the Ross Ice Shelf, than the AMPS analyses. By constructing pseudo-observations in the sensitivity region using the gradient information of forecast windstorm intensity around McMurdo, the model initial conditions are revised with the WRF three-dimensional variational data assimilation, which leads to significant improvement in the prediction of the windstorm. An adjoint sensitivity study is an efficient way to identify sensitivity regions in order to collect more observations in the region for better forecasts in a specific aspect of interest.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2008 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Xiao, Qingnong
Kuo, Ying-Hwa
Ma, Zaizhong
Huang, Wei
Huang, Xiang-Yu
Zhang, Xiaoyan
Barker, Dale
Michalakes, John
Dudhia, Jimy
Publisher UCAR/NCAR - Library
Publication Date 2008-10-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-17T15:55:53.560598
Metadata Record Identifier edu.ucar.opensky::articles:17324
Metadata Language eng; USA
Suggested Citation Xiao, Qingnong, Kuo, Ying-Hwa, Ma, Zaizhong, Huang, Wei, Huang, Xiang-Yu, Zhang, Xiaoyan, Barker, Dale, Michalakes, John, Dudhia, Jimy. (2008). Application of an adiabatic WRF adjoint to the investigation of the May 2004 McMurdo, Antarctica, severe wind event. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d7b56m14. Accessed 11 August 2025.

Harvest Source