Development of a physically based sediment transport model for Green Bay, Lake Michigan

Green Bay is the largest freshwater estuarine system on earth, drains one-third of the Lake Michigan basin and delivers one-third of the lake's phosphorus load. Southern Green Bay is a designated area of concern due to ecosystem degradation that includes eutrophication, harmful algal blooms, hypoxia, lost or altered habitat, and reduced water quality. While marine estuaries are subject to tidal influence and saltwater intrusion, this freshwater estuary is subject to lake intrusion of freshwater with different quality parameters. Understanding the simultaneous effects of tributary flows and lake intrusions is crucial to comprehend the dynamics of freshwater estuaries. A single hydrodynamic, wind-wave, and sediment transport model was developed for the lake and its estuary. This approach provides fine resolution in the estuary and simulates directly the combined effects of tributary flows and lake intrusions. The approach overcomes open-boundary limitations of nested models, and of whole-lake models that lack sufficient resolution or wind-wave and sediment transport simulation. The model confirms findings of previous studies and demonstrates how the circulation, thermal regime, wave action, and sediment transport in the estuary depend on meteorological forcing, tributary flows, and lake intrusions. The stage is set to apply this approach to study biogeochemical processes in lakes and estuaries.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2021 American Geophysical Union.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Khazaei, Bahram
Bravo, H. R.
Anderson, E. J.
Klump, J. V.
Publisher UCAR/NCAR - Library
Publication Date 2021-10-18T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-11T16:10:40.330489
Metadata Record Identifier edu.ucar.opensky::articles:24851
Metadata Language eng; USA
Suggested Citation Khazaei, Bahram, Bravo, H. R., Anderson, E. J., Klump, J. V.. (2021). Development of a physically based sediment transport model for Green Bay, Lake Michigan. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d7qc070b. Accessed 13 August 2025.

Harvest Source