Eddy-mediated turbulent mixing of oxygen in the equatorial Pacific

In the tropical Pacific, weak ventilation and intense microbial respiration at depth give rise to a low dissolved oxygen (O2) environment that is thought to be ventilated primarily by the equatorial current system (ECS). The role of mesoscale eddies and vertical mixing as potential pathways of O2 supply in this region, however, remains poorly known due to sparse observations and coarse model resolution. Using an eddy resolving simulation of ocean circulation and biogeochemistry, we assess the contribution of these processes to the O2 budget balance and find that vertical mixing of O2, which is modulated by the surface wind speed and the vertical shear of the eddying currents, contributes substantially to the replenishment of O2 in the upper equatorial Pacific thermocline, complementing the advective supply of O2 by the ECS and meridional circulation at depth. These transport processes vary seasonally in conjunction with the wind: mixing of O2 into the upper thermocline is strongest during boreal summer and fall when the vertical shear and eddy kinetic energy are intensified. The relationship between eddy activity and the downward mixing of O2 arises from the modulation of equatorial turbulence by Tropical Instability Waves via their impacts on the vertical shear. This interaction of processes across scales sustains a local pathway of O2 delivery into the equatorial Pacific interior and highlights the need for adequate observations and models of turbulent mixing and mesoscale processes for understanding and predicting the fate of the tropical Pacific O2 content in a warmer and more stratified ocean.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links

Related Software #1 : Eddy-Mediated Mixing of Oxygen in the Equatorial Pacific

Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Eddebbar, Y. A.
Whitt, D. B.
Verdy, A.
Mazloff, M. R.
Subramanian, A. C.
Long, Matthew
Publisher UCAR/NCAR - Library
Publication Date 2024-03-27T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-10T20:03:20.421145
Metadata Record Identifier edu.ucar.opensky::articles:27086
Metadata Language eng; USA
Suggested Citation Eddebbar, Y. A., Whitt, D. B., Verdy, A., Mazloff, M. R., Subramanian, A. C., Long, Matthew. (2024). Eddy-mediated turbulent mixing of oxygen in the equatorial Pacific. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d7sq94k6. Accessed 06 August 2025.

Harvest Source