Future changes in regional tropical cyclone wind, precipitation, and flooding using event-based downscaling

Understanding changes in the hazard component of climate risk is important to inform societal resilience planning in a changing climate. Here, we examine local changes in wind speed, rainfall, and flooding related to tropical cyclones (TCs) and compare them across statistical and dynamical modeling approaches. Our focus region is the Delaware River Basin, located in the northeastern United States. We pair event-based downscaling with large ensemble climate model information to capture the details of extreme TC wind, rain, and flooding, and their likelihood, in a changing climate. We identify local TCs in the Community Earth System Model 2 Large Ensemble (CESM2-LENS). We find fewer TCs in the future, but these future storms have higher wind speeds and are wetter. We also find that TCs produce heavier 3-day precipitation distributions than all other summertime weather events, with TCs constituting a larger percentage of the upper tail of the full precipitation distribution. With this information, we identify a small collection of 200-year return events and compare the resulting TC rain and wind across dynamical and statistical downscaling methods. We find that dynamical downscaling produces peak rain rates far higher than CESM or the statistical downscaling method. It can also produce quite different future changes in precipitation totals for the small set of events considered here. This leads to vastly different flood responses. Overall, our results highlight the need to interpret future changes of event-based simulations in the context of downscaling method limitations.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links

Related Dataset #1 : ERA5-Land hourly data from 1950 to present

Related Service #1 : Cheyenne: SGI ICE XA Cluster

Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Michalek, A.
Done, J. M.
Villarini, G.
Publisher UCAR/NCAR - Library
Publication Date 2024-06-10T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-10T20:01:20.371167
Metadata Record Identifier edu.ucar.opensky::articles:27280
Metadata Language eng; USA
Suggested Citation Michalek, A., Done, J. M., Villarini, G.. (2024). Future changes in regional tropical cyclone wind, precipitation, and flooding using event-based downscaling. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d7cj8jpp. Accessed 11 August 2025.

Harvest Source