Gravitational separation of Ar/N2 and age of air in the lowermost stratosphere in airborne observations and a chemical transport model

Accurate simulation of atmospheric circulation, particularly in the lower stratosphere, is challenging due to unresolved wave-mean flow interactions and limited high-resolution observations for validation. Gravity-induced pressure gradients lead to a small but measurable separation of heavy and light gases by molecular diffusion in the stratosphere. Because the relative abundance of Ar to N-2 is exclusively controlled by physical transport, the argon-to-nitrogen ratio (Ar/N-2) provides an additional constraint on circulation and the age of air (AoA), i.e., the time elapsed since entry of an air parcel into the stratosphere. Here we use airborne measurements of N2O and Ar/N-2 from nine campaigns with global coverage spanning 2008-2018 to calculate AoA and to quantify gravitational separation in the lowermost stratosphere. To this end, we develop a new N2O-AoA relationship using a Markov chain Monte Carlo algorithm. We observe that gravitational separation increases systematically with increasing AoA for samples with AoA between 0 and 3 years. These observations are compared to a simulation of the TOMCAT/SLIMCAT 3-D chemical transport model, which has been updated to include gravitational fractionation of gases. We demonstrate that although AoA at old ages is slightly underestimated in the model, the relationship between Ar/N-2 and AoA is robust and agrees with the observations. This highlights the potential of Ar/N-2 to become a new AoA tracer that is subject only to physical transport phenomena and can supplement the suite of available AoA indicators.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Birner, B.
Chipperfield, M. P.
Morgan, E. J.
Stephens, Britton
Linz, M.
Feng, W.
Wilson, C.
Bent, J. D.
Wofsy, S. C.
Severinghaus, J.
Keeling, R. F.
Publisher UCAR/NCAR - Library
Publication Date 2020-10-30T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-11T19:14:02.418191
Metadata Record Identifier edu.ucar.opensky::articles:23817
Metadata Language eng; USA
Suggested Citation Birner, B., Chipperfield, M. P., Morgan, E. J., Stephens, Britton, Linz, M., Feng, W., Wilson, C., Bent, J. D., Wofsy, S. C., Severinghaus, J., Keeling, R. F.. (2020). Gravitational separation of Ar/N2 and age of air in the lowermost stratosphere in airborne observations and a chemical transport model. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d7f47sd3. Accessed 23 August 2025.

Harvest Source