Impact of model resolution and initial/boundary conditions in forecasting low-level atmospheric fields over the Incheon International Airport

This study investigates the impact of initial conditions/boundary conditions (ICs/BCs) and horizontal resolutions on forecast for average weather conditions, focusing on low-level weather variables such as 2-m temperature (T2m), 2-m water vapor mixing ratio (Q2m), and 10-m wind speed (WS10). A Weather Research and Forecasting (WRF) Model is used for regional mesoscale model simulations and large-eddy simulations (LESs). The 6-h-interval forecast fi elds generated by the Global Forecast System of the National Centers for Environmental Prediction and the Korean Integrated Model of the Korea Meteorological Administration are utilized as ICs/BCs for the regional models. Numerical experiments are performed for 24 h starting at 0000 UTC on each day in April 2021 when the average monthly wind speed was strongest during 10 years (2011-20). A comparison of model simulations with observations obtained around the Yeongjong Island, where Incheon International Airport is situated, shows that the regional models capture the time series of T2m, Q2m, and WS10 more effectively than the global model forecasts. Moreover, the LES experiments with a 100-m horizontal grid spacing simulate higher Q2m and lower WS10 during the daytime compared to the 1-km WRF. This results in a deterioration of their time-series correlation with the observations. Meanwhile, the 100-m LES forecasts time series of T2m over ocean stations and Q2m over land stations, as well as probability density functions of low-level weather variables, more accurately than that of the 1-km WRF. Our study also emphasizes the need for caution when comparing high-resolution model results with observation values at specific fi c stations due to the high spatial variability in low-level meteorological fi elds.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links

Related Dataset #1 : NCEP GFS 0.25 Degree Global Forecast Grids Historical Archive

Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Y. Do
Lim, K. S.
Kim, K.
Shin, Hyeyum Hailey
Chang, E.
Lee, G.
Publisher UCAR/NCAR - Library
Publication Date 2024-08-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-10T20:00:02.695368
Metadata Record Identifier edu.ucar.opensky::articles:27438
Metadata Language eng; USA
Suggested Citation Y. Do, Lim, K. S., Kim, K., Shin, Hyeyum Hailey, Chang, E., Lee, G.. (2024). Impact of model resolution and initial/boundary conditions in forecasting low-level atmospheric fields over the Incheon International Airport. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d78d01jb. Accessed 03 August 2025.

Harvest Source