Near-surface wind convergence over the Gulf Stream - The role of SST revisited

High-resolution observations have demonstrated the presence of strong time-mean near-surface wind convergence (NSWC) anchored across oceanic frontal zones, such as the western boundary currents. Initial analyses appeared to show a close association between this time-mean NSWC and time-mean properties of the underlying sea surface temperature (SST), such as the gradients and second derivatives (e.g., Laplacian of SST), acting through pressure-adjustment and vertical-mixing mechanisms. However, a series of recent papers have revealed the instantaneous NSWC to be dominated by atmospheric fronts and have suggested the importance of air-sea processes occurring instead on shorter, synoptic time scales. In this paper, using the ERA5 reanalysis dataset in the Gulf Stream region, we aim to reconcile these viewpoints by investigating the spatial and temporal dependence of NSWC and its relationship to SST. It is revealed that while atmospheric frontal processes govern the day-to-day variability of NSWC, the relatively weak but persistent pres-sure-adjustment and vertical-mixing mechanisms provide lower-frequency modulations in conditions both with and without atmospheric fronts. In addition to their temporal characteristics, each mechanism is shown through spectral analysis to dominate on specific spatial scales. In light of recent work that has tied remote atmospheric responses to NSWC anomalies in western boundary current regions, these results emphasize the importance of oceanic frontal zones for atmospheric variability on all spatiotemporal scales.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2023 American Meteorological Society (AMS).


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Small, R. Justin
Rousseau, V.
Parfitt, R.
Laurindo, Lucas C.
O'Neill, L.
Masunaga, R.
Schneider, N.
Chang, P.
Publisher UCAR/NCAR - Library
Publication Date 2023-08-15T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-11T15:15:31.157140
Metadata Record Identifier edu.ucar.opensky::articles:26587
Metadata Language eng; USA
Suggested Citation Small, R. Justin, Rousseau, V., Parfitt, R., Laurindo, Lucas C., O'Neill, L., Masunaga, R., Schneider, N., Chang, P.. (2023). Near-surface wind convergence over the Gulf Stream - The role of SST revisited. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d7j96bd0. Accessed 06 August 2025.

Harvest Source