Sensitivity of dryline convection forecasts to upstream forecast errors for two weakly forced MPEX cases

The sensitivity of convective forecasts along the Texas dryline to upstream forecast fields at earlier lead times is evaluated for two consecutive days (27-28 May) characterized by no clear synoptic forcing for convection initiation (CI) during the 2013 Mesoscale Predictability Experiment (MPEX) by applying the ensemble-based sensitivity technique to convection-allowing WRF ensemble forecasts. For both cases, the members with stronger convection are characterized by higher water vapor just above the top of the boundary layer, which is associated with lower convective inhibition (CIN) at the time of CI. Forecast convection is sensitive to the lower-tropospheric water vapor and zonal wind at earlier lead times farther south along the dryline, such that increasing the water vapor and/or making the wind more easterly is associated with more convection. For 28 May, the water vapor along the dryline is also sensitive to the convection that occurs around 0600 UTC, which leads to cold pool-induced surface divergence that subsequently shifts the dryline north or south. Ensemble members that correctly have decreased convection in the Texas Panhandle on 28 May have more accurate forecasts of water vapor and meridional wind with respect to dropwindsondes in the sensitive region 9 h prior to CI compared to members with more extensive convection. Reducing the 0-h water vapor within the sensitive region can suppress convection in members with extensive convection; however, increasing the 0-h water vapor does not lead to more convection in members without convection.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links

Related Dataset #1 : NSF/NCAR G-V Dropsonde High Resolution Data. Version 3.0

Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2017 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Torn, R. D.
Romine, Glen
Galarneau, T. J.
Publisher UCAR/NCAR - Library
Publication Date 2017-05-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-11T19:49:27.996224
Metadata Record Identifier edu.ucar.opensky::articles:20878
Metadata Language eng; USA
Suggested Citation Torn, R. D., Romine, Glen, Galarneau, T. J.. (2017). Sensitivity of dryline convection forecasts to upstream forecast errors for two weakly forced MPEX cases. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d7ks6v0z. Accessed 23 August 2025.

Harvest Source