Severe weather prediction using storm surrogates from an ensemble forecasting system

Probabilistic severe weather forecasts for days 1 and 2 were produced using 30-member convection-allowing ensemble forecasts initialized by an ensemble Kalman filter data assimilation system during a 32-day period coinciding with the Mesoscale Predictability Experiment. The forecasts were generated by smoothing the locations where model output indicated extreme values of updraft helicity, a surrogate for rotating thunderstorms in model output. The day 1 surrogate severe probability forecasts (SSPFs) produced skillful and reliable predictions of severe weather during this period, after an appropriate calibration of the smoothing kernel. The ensemble SSPFs exceeded the skill of SSPFs derived from two benchmark deterministic forecasts, with the largest differences occurring on the mesoscale, while all SSPFs produced similar forecasts on synoptic scales. While the deterministic SSPFs often overforecasted high probabilities, the ensemble improved the reliability of these probabilities, at the expense of producing fewer high-probability values. For the day 2 period, the SSPFs provided competitive guidance compared to the day 1 forecasts, although additional smoothing was needed to produce the same level of skill, reducing the forecast sharpness. Results were similar using 10 ensemble members, suggesting value exists when running a smaller ensemble if computational resources are limited. Finally, the SSPFs were compared to severe weather risk areas identified in Storm Prediction Center (SPC) convective outlooks. The SSPF skill was comparable to the SPC outlook skill in identifying regions where severe weather would occur, although performance varied on a day-to-day basis.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2016 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Sobash, Ryan A.
Schwartz, Craig S.
Romine, Glen
Fossell, Kathryn R.
Weisman, Morris L.
Publisher UCAR/NCAR - Library
Publication Date 2016-02-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-11T20:51:29.448578
Metadata Record Identifier edu.ucar.opensky::articles:18069
Metadata Language eng; USA
Suggested Citation Sobash, Ryan A., Schwartz, Craig S., Romine, Glen, Fossell, Kathryn R., Weisman, Morris L.. (2016). Severe weather prediction using storm surrogates from an ensemble forecasting system. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d7s75hv0. Accessed 31 July 2025.

Harvest Source