Simulation of United States Mesoscale Convective Systems using GFDL's new high-resolution general circulation model

Accurate representation of mesoscale scale convective systems (MCSs) in climate models is of vital importance to understanding global energy, water cycles, and extreme weather. In this study, we evaluate the simulated MCS features over the United States from the newly developed GFDL global high-resolution (similar to 50 km) AM4 model by comparing them with the observations during spring to early summer (April-June) and late summer (July-August). The results show that the spatial distribution and seasonality of occurrence and genesis frequency of MCSs are reasonably simulated over the central United States in both seasons. The model reliably reproduces the observed features of MCS duration, translation speed, and size over the central United States, as well as the favorable large-scale circulation pattern associated with MCS development over the central United States during spring and early summer. However, the model misrepresents the amplitude and the phase of the diurnal cycle of MCSs during both seasons. In addition, the spatial distribution of occurrence and genesis frequency of MCSs over the eastern United States is substantially overestimated, with larger biases in early spring and summer. Furthermore, while large-scale circulation patterns are reasonably simulated in spring and early summer, they are misrepresented in the model during summer. Finally, we examine MCS-related precipitation, finding that the model overestimates MCS-related precipitation during spring and early summer, but this bias is insufficient to explain the significant dry bias observed in total precipitation over the central United States. Nonetheless, the dry biases in MCS-associated precipitation during late summer likely contribute to the overall precipitation deficit in the model.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2023 American Meteorological Society (AMS).


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Dong, Wenhao
Zhao, M.
Ming, Y.
Krasting, J. P.
Ramaswamy, V.
Publisher UCAR/NCAR - Library
Publication Date 2023-10-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-11T15:13:54.166425
Metadata Record Identifier edu.ucar.opensky::articles:26957
Metadata Language eng; USA
Suggested Citation Dong, Wenhao, Zhao, M., Ming, Y., Krasting, J. P., Ramaswamy, V.. (2023). Simulation of United States Mesoscale Convective Systems using GFDL's new high-resolution general circulation model. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d700067r. Accessed 04 August 2025.

Harvest Source