A novel set of geometric verification test fields with application to distance measures

As part of the second phase of the spatial forecast verification intercomparison project (ICP), dubbed the Mesoscale Verification Intercomparison in Complex Terrain (MesoVICT) project, a new set of idealized test fields is prepared. This paper describes these new fields and their rationale and uses them to analyze a number of summary measures associated with distance and geometric-based approaches. The results provide guidance about how they inform about performance under various scenarios. The new case comparisons are grouped into four categories: (i) pathological situations such as when a variable is zero valued at all grid points; (ii) circular events aimed at evaluating how different methods handle contrived situations, such as equal but opposite translations, the presence of multiple events of same/different size, boundary effects, and the influence of the positioning of events in the domain; (iii) elliptical events representing simplified scenarios that mimic commonly encountered weather phenomena in complex terrain; and (iv) cases aimed at analyzing how the verification methods handle small-scale scattered events, very large events with holes (e.g., a small portion of clear sky on a cloudy overcast day), and the presence of noise in one or both fields. Results show that all analyzed measures perform poorly in the pathological setting. They are either not able to provide a result at all or they instigate a special rule to prescribe a value resulting in erratic results. The analysis also showed that methods provide similar information in many situations, but that each has its positive properties along with certain unique limitations.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Gilleland, Eric
Skok, Gregor
Brown, Barbara G.
Casati, Barbara
Dorninger, Manfred
Mittermaier, Marion P.
Roberts, Nigel
Wilson, Laurence J.
Publisher UCAR/NCAR - Library
Publication Date 2020-04-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:35:29.641208
Metadata Record Identifier edu.ucar.opensky::articles:23205
Metadata Language eng; USA
Suggested Citation Gilleland, Eric, Skok, Gregor, Brown, Barbara G., Casati, Barbara, Dorninger, Manfred, Mittermaier, Marion P., Roberts, Nigel, Wilson, Laurence J.. (2020). A novel set of geometric verification test fields with application to distance measures. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7nk3j6b. Accessed 18 July 2025.

Harvest Source