A regional climatography of West Nile, Uganda, to support human plague modeling

The West Nile region in northwestern Uganda is a focal point for human plague, which peaks in boreal autumn and is spread by fleas that travel on rodent hosts. The U.S. Centers for Disease Control and Prevention is collaborating with the National Center for Atmospheric Research to quantitatively address the linkages between climate and human plague in this region. The aim of this paper is to advance knowledge of the climatic conditions required to maintain enzootic cycles and to trigger epizootic cycles and ultimately to target limited surveillance, prevention, and control resources. A hybrid dynamical-statistical downscaling technique was applied to simulations from the Weather Research and Forecasting Model (WRF) to generate a multiyear 2-km climate dataset for modeling plague in the West Nile region. The resulting dataset resolves the spatial variability and annual cycle of temperature, humidity, and rainfall in West Nile relative to satellite-based and in situ records. Topography exerts a first-order influence on the climatic gradients in West Nile, which lies in a transition zone between the drier East African Plateau and the wetter Congo Basin, and between the unimodal rainfall regimes of the Sahel and the bimodal rainfall regimes characteristic of equatorial East Africa. The results of a companion paper in which the WRF-based climate fields were applied to develop an improved logistic regression model of human plague occurrence in West Nile are summarized, revealing robust positive associations with rainfall at the tails of the rainy season and negative associations with rainfall during a dry spell each summer.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2012 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Monaghan, Andrew
MacMillan, Katherine
Moore, Sean
Mead, Paul
Hayden, Mary
Eisen, Rebecca
Publisher UCAR/NCAR - Library
Publication Date 2012-07-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:53:21.492767
Metadata Record Identifier edu.ucar.opensky::articles:12240
Metadata Language eng; USA
Suggested Citation Monaghan, Andrew, MacMillan, Katherine, Moore, Sean, Mead, Paul, Hayden, Mary, Eisen, Rebecca. (2012). A regional climatography of West Nile, Uganda, to support human plague modeling. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7t154cd. Accessed 22 June 2025.

Harvest Source