Assessing the ability to derive rates of polar middle-atmospheric descent using trace gas measurements from remote sensors

We investigate the reliability of using trace gas measurements from remote sensing instruments to infer polar atmospheric descent rates during winter within 46-86 km altitude. Using output from the Specified Dynamics Whole Atmosphere Community Climate Model (SD-WACCM) between 2008 and 2014, tendencies of carbon monoxide (CO) volume mixing ratios (VMRs) are used to assess a common assumption of dominant vertical advection of tracers during polar winter. The results show that dynamical processes other than vertical advection are not negligible, meaning that the transport rates derived from trace gas measurements do not represent the mean descent of the atmosphere. The relative importance of vertical advection is lessened, and exceeded by other processes, during periods directly before and after a sudden stratospheric warming, mainly due to an increase in eddy transport. It was also found that CO chemistry cannot be ignored in the mesosphere due to the night-time layer of OH at approximately 80km altitude. CO VMR profiles from the Kiruna Microwave Radiometer and the Microwave Limb Sounder were compared to SD-WACCM output, and show good agreement on daily and seasonal timescales. SD-WACCM CO profiles are combined with the CO tendencies to estimate errors involved in calculating the mean descent of the atmosphere from remote sensing measurements. The results indicate errors on the same scale as the calculated descent rates, and that the method is prone to a misinterpretation of the direction of air motion. The "true" rate of atmospheric descent is seen to be masked by processes, other than vertical advection, that affect CO. We suggest an alternative definition of the rate calculated using remote sensing measurements: not as the mean descent of the atmosphere, but as an effective rate of vertical transport for the trace gas under observation.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links

Related Dataset #1 : MLS/Aura L2 Carbon Monoxide (CO) Mixing Ratio - Version 4

Related Dataset #2 : Middle atmospheric carbon monoxide above Kiruna, Sweden (67.8° N, 20.4° E), 2008-2015, supplement to: Ryan, Niall J; Palm, Mathias; Raffalski, Uwe; Larsson, Richard; Manney, Gloria; Millán, Luis; Notholt, Justus (2017): Strato-mesospheric carbon monoxide profiles above Kiruna, Sweden (67.8° N, 20.4° E), since 2008. Earth System Science Data, 9(1), 77-89

Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Ryan, Niall J.
Kinnison, Douglas E.
Garcia, Rolando R.
Hoffmann, Christoph G.
Palm, Mathias
Raffalski, Uwe
Notholt, Justus
Publisher UCAR/NCAR - Library
Publication Date 2018-02-02T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T19:17:14.632421
Metadata Record Identifier edu.ucar.opensky::articles:21337
Metadata Language eng; USA
Suggested Citation Ryan, Niall J., Kinnison, Douglas E., Garcia, Rolando R., Hoffmann, Christoph G., Palm, Mathias, Raffalski, Uwe, Notholt, Justus. (2018). Assessing the ability to derive rates of polar middle-atmospheric descent using trace gas measurements from remote sensors. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d74j0hsd. Accessed 25 June 2025.

Harvest Source