Inherently conservative nonpolynomial-based remapping schemes: Application to semi-Lagrangian transport

A group of new conservative remapping schemes based on nonpolynomial approximations is proposed. The remapping schemes rely on the conservative cascade scheme (CCS), which employs an efficient sequence of 1D remapping operations to solve a multidimensional problem. The present study adapts three new nonpolynomial-based reconstructions of subgrid variation to the CCS: the Piecewise Hyperbolic Method (PHM), the Piecewise Double Hyperbolic Method (PDHM), and the Piecewise Rational Method (PRM) for comparison with the baseline method: the Piecewise Parabolic Method (PPM). Additionally, an adaptive hybrid approximation scheme, PPM-Hybrid (PPM-H), is constructed using monotonic PPM for smooth data and local extrema and using PHM for steep jumps where PPM typically suffers large accuracy degradation because of its original monotonic filter. Smooth and nonsmooth data profiles are transported in 1D, 2D Cartesian, and 2D spherical frameworks under uniform advection, solid-body rotation, and deformational flow. Accuracy is compared via the L₁ global error norm. In general, PPM outperformed PHM, but when the majority of the error came from PPM degradation at sharp derivative changes (e.g., the vicinity near sine wave extrema), PHM was more accurate. PRM performed very similarly to PPM for nonsmooth functions, but the order of convergence was worse than PPM for smoother data. PDHM performed the worst of all of the nonpolynomial methods for nearly every test case. PPM-H outperformed PPM and all of the nonpolynomial methods for all test cases in all geometries, offering a robust advantage in the CCS scheme with a negligible increase in computational time.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2008 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 of the U.S. Copyright Act or that satisfies the conditions specified in Section 108 of the U.S. Copyright Act (17 USC §108, as revised by P.L. 94-553) does not require the AMS's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statement, requires written permission or a license form the AMS. Additional details are provided in the AMS Copyright Policy, available on the AMS Web site located at (http://www.ametsoc.org/AMS) or from the AMS at 617-227-2425 or copyright@ametsoc.org


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Norman, Matthew
Nair, Ramachandran
Publisher UCAR/NCAR - Library
Publication Date 2008-12-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:42:19.046147
Metadata Record Identifier edu.ucar.opensky::articles:6046
Metadata Language eng; USA
Suggested Citation Norman, Matthew, Nair, Ramachandran. (2008). Inherently conservative nonpolynomial-based remapping schemes: Application to semi-Lagrangian transport. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7668dc0. Accessed 30 June 2025.

Harvest Source