Climate feedback variance and the interaction of aerosol forcing and feedbacks

Aerosols can influence cloud radiative effects and, thus, may alter interpretation of how Earth’s radiative budget responds to climate forcing. Three different ensemble experiments from the same climate model with different greenhouse gas and aerosol scenarios are used to analyze the role of aerosols in climate feedbacks and their spread across initial condition ensembles of transient climate simulations. The standard deviation of global feedback parameters across ensemble members is low, typically 0.02 W m−2 K−1. Feedbacks from high (8.5 W m−2) and moderate (4.5 W m−2) year 2100 forcing cases are nearly identical. An aerosol kernel is introduced to remove effects of aerosol cloud interactions that alias into cloud feedbacks. Adjusted cloud feedbacks indicate an “aerosol feedback” resulting from changes to climate that increase sea-salt emissions, mostly in the Southern Ocean. Ensemble simulations also indicate higher tropical cloud feedbacks with higher aerosol loading. These effects contribute to a difference in cloud feedbacks of nearly 50% between ensembles of the same model. These two effects are also seen in aquaplanet simulations with varying fixed drop number. Thus aerosols can be a significant modifier of cloud feedbacks, and different representations of aerosols and their interactions with clouds may contribute to multimodel spread in climate feedbacks and climate sensitivity in multimodel archives.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2016 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Gettelman, A.
Lin, L.
Medeiros, B.
Olson, J.
Publisher UCAR/NCAR - Library
Publication Date 2016-09-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T19:00:30.655824
Metadata Record Identifier edu.ucar.opensky::articles:18730
Metadata Language eng; USA
Suggested Citation Gettelman, A., Lin, L., Medeiros, B., Olson, J.. (2016). Climate feedback variance and the interaction of aerosol forcing and feedbacks. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7p84djr. Accessed 30 June 2025.

Harvest Source