Comparison of cumulus parameterizations and entrainment using domain-mean wind divergence in a regional model

Several different cumulus parameterizations are compared in a 10-day regional model simulation over the tropical Americas in northern summer. A simple bulk diagnostic test is devised, comparing the model's preferred domain-mean wind divergence profile with “observed” drivergence. The latter is obtained by a line integral of the normal wind component at the model's outer boundary, from the ECMWF reanalysis data used as lateral boundary conditions. The former is obtained from a line integral one grid point in from the boundary, a perimeter that encloses almost exactly the same region. Even though the model fields near the boundary are strongly nudged toward the ECMWF values, the difference is distinct, and indicative of systematic errors in the model's heating field throughout the interior of the domain. Heating reflects the effects of the convection scheme, both direct and indirect (e.g., through its impact on resolved condensation). A useful axis along which to characterize schemes appears to be overactive versus underactive. Underactive convective schemes tend to produce too little low-level convergence and upper-level divergence, while overactive schemes produce too much. This categorization is also reflected in rainfall fields, as overactive schemes produce widespread light convective rain while underactive schemes produce sparse occasional storms. For example, the Kain–Fritsch scheme is overactive with its default entraining-plume radius of 1500 m, a value optimized for midlatitudes over land. A value of 750 m makes the regional divergence magnitude about right, but makes the upper-tropospheric outflow altitude too low, illustrating a classic dilemma of entraining-plume models of convection. Schemes with other conceptual structures give widely varying divergence errors. The largest errors are found with the Anthes–Kuo scheme, while the smallest errors are found with the Betts–Miller–Janjic scheme, which has no consistent divergence bias over time. Diagnosis of other North American monsoon simulations supports the general underactive/ overactive characterization, but shows that the best scheme and parameters may depend on weather regime.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2004 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Mapes, Brian
Warner, Thomas
Xu, Mei
Gochis, David
Publisher UCAR/NCAR - Library
Publication Date 2004-06-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:44:49.885986
Metadata Record Identifier edu.ucar.opensky::articles:10266
Metadata Language eng; USA
Suggested Citation Mapes, Brian, Warner, Thomas, Xu, Mei, Gochis, David. (2004). Comparison of cumulus parameterizations and entrainment using domain-mean wind divergence in a regional model. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7qj7hwp. Accessed 22 June 2025.

Harvest Source