Causes and consequences of magnetic complexity changes within interplanetary coronal mass ejections: A statistical study

We present the first statistical analysis of complexity changes affecting the magnetic structure of interplanetary coronal mass ejections (ICMEs), with the aim of answering the questions: How frequently do ICMEs undergo magnetic complexity changes during propagation? What are the causes of such changes? Do the in situ properties of ICMEs differ depending on whether they exhibit complexity changes? We consider multispacecraft observations of 31 ICMEs by MESSENGER, Venus Express, ACE, and STEREO between 2008 and 2014 while radially aligned. By analyzing their magnetic properties at the inner and outer spacecraft, we identify complexity changes that manifest as fundamental alterations or significant reorientations of the ICME. Plasma and suprathermal electron data at 1 au, and simulations of the solar wind enable us to reconstruct the propagation scenario for each event, and to identify critical factors controlling their evolution. Results show that similar to 65% of ICMEs change their complexity between Mercury and 1 au and that interaction with multiple large-scale solar wind structures is the driver of these changes. Furthermore, 71% of ICMEs observed at large radial (>0.4 au) but small longitudinal (<15 degrees) separations exhibit complexity changes, indicating that propagation over large distances strongly affects ICMEs. Results also suggest that ICMEs may be magnetically coherent over angular scales of at least 15 degrees, supporting earlier theoretical and observational estimates. This work presents statistical evidence that magnetic complexity changes are consequences of ICME interactions with large-scale solar wind structures, rather than intrinsic to ICME evolution, and that such changes are only partly identifiable from in situ measurements at 1 au.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Scolini, Camilla
Winslow, Réka M.
Lugaz, Noé
Salman, Tarik M.
Davies, Emma E.
Galvin, Antoinette B.
Publisher UCAR/NCAR - Library
Publication Date 2022-03-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:33:07.126652
Metadata Record Identifier edu.ucar.opensky::articles:25209
Metadata Language eng; USA
Suggested Citation Scolini, Camilla, Winslow, Réka M., Lugaz, Noé, Salman, Tarik M., Davies, Emma E., Galvin, Antoinette B.. (2022). Causes and consequences of magnetic complexity changes within interplanetary coronal mass ejections: A statistical study. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7zk5m92. Accessed 29 June 2025.

Harvest Source