Duration of an ionospheric data assimilation of a coupled thermosphere-ionosphere model

Initial conditions provide a critical input for accurate numerical forecast models in meteorology and oceanography. In this paper, we address this problem in space weather forecast models of the thermosphere-ionosphere system by using the electron densities from the Global Assimilation of Ionospheric Measurements (GAIM) model to initialize the ionospheric part of the Thermosphere Ionosphere Nested Grid (TING) model. The electron densities from the GAIM-initialized TING model (G-TING) are compared with the output from the stand-alone TING model (S-TING) for geomagnetically quiet and disturbed times in the early April 2004 period in order to observe how long the effects of the initialization would last. Our study shows that the e-folding time of the initialization is about 2-3 hours for most conditions, although this result would probably be different if the initialization for the thermosphere is also included. However, this relaxation time displays significant variations with latitude, local time, and height, and it may also depend on the initial electron density differences between G-TING and S-TING. Furthermore, positive (G-TING > S-TING) and negative (G-TING < S-TING) density differences have different time durations of the initialization effects. Our study also indicates that there is little variation of the relaxation time with the geomagnetic activity despite the impact of geomagnetic storms on the thermosphere-ionosphere system.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2007 American Geophysical Union.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Jee, G.
Burns, Alan
Wang, Wenbin
Solomon, Stanley
Schunk, R.
Scherliess, L.
Thompson, D.
Sojka, J.
Zhu, L.
Publisher UCAR/NCAR - Library
Publication Date 2007-01-16T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:39:37.994660
Metadata Record Identifier edu.ucar.opensky::articles:7293
Metadata Language eng; USA
Suggested Citation Jee, G., Burns, Alan, Wang, Wenbin, Solomon, Stanley, Schunk, R., Scherliess, L., Thompson, D., Sojka, J., Zhu, L.. (2007). Duration of an ionospheric data assimilation of a coupled thermosphere-ionosphere model. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7319w68. Accessed 26 June 2025.

Harvest Source