Effect of aerosols and NO₂ concentration on ultraviolet actinic flux near Mexico City during MILAGRO: Measurements and model calculations

Urban air pollution absorbs and scatters solar ultraviolet (UV) radiation, and thus has a potentially large effect on tropospheric photochemical rates. We present the first detailed comparison between actinic fluxes (AF) in the wavelength range 330-420 nm measured in highly polluted conditions and simulated with the Tropospheric Ultraviolet-Visible (TUV) model. Measurements were made during the MILAGRO campaign near Mexico City in March 2006, at a ground-based station near Mexico City (the T1 supersite) and from the NSF/NCAR C-130 aircraft. At the surface, measured AF values are typically smaller than the model by up to 25% in the morning, 10% at noon, and 40% in the afternoon, for pollution-free and cloud-free conditions. When measurements of PBL height, NO2 concentration and aerosols optical properties are included in the model, the agreement improves to within ±10% in the morning and afternoon, and ±3% at noon. Based on daily averages, aerosols account for 68% and NO2 for 25% of AF reductions observed at the surface. Several overpasses from the C-130 aircraft provided the opportunity to examine the AF perturbations aloft, and also show better agreement with the model when aerosol and NO2 effects are included above and below the flight altitude. TUV model simulations show that the vertical structure of the actinic flux is sensitive to the choice of the aerosol single scattering albedo (SSA) at UV wavelengths. Typically, aerosols enhance AF above the PBL and reduce AF near the surface. However, for highly scattering aerosols (SSA > 0.95), enhancements can penetrate well into the PBL, while for strongly absorbing aerosols (SSA < 0.6) reductions in AF are computed in the free troposphere as well as in the PBL. Additional measurements of the SSA at these wavelengths are needed to better constrain the effect of aerosols on the vertical structure of the AF.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright Author(s) 2013. This work is distributed under the Creative Commons Attribution 3.0 License


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Palancar, Gustavo
Lefer, B.
Hall, Samuel
Shaw, W.
Corr, C.
Herndon, S.
Slusser, J.
Madronich, Sasha
Publisher UCAR/NCAR - Library
Publication Date 2013-01-24T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:51:03.427509
Metadata Record Identifier edu.ucar.opensky::articles:12420
Metadata Language eng; USA
Suggested Citation Palancar, Gustavo, Lefer, B., Hall, Samuel, Shaw, W., Corr, C., Herndon, S., Slusser, J., Madronich, Sasha. (2013). Effect of aerosols and NO₂ concentration on ultraviolet actinic flux near Mexico City during MILAGRO: Measurements and model calculations. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7x067vw. Accessed 28 June 2025.

Harvest Source