Effects of vegetation and soil moisture on the simulated land surface processes from the coupled WRF/Noah model

The coupled Weather Research and Forecasting (WRF) model with the Noah land surface model (Noah LSM) is an attempt of the modeling community to embody the complex interrelationship between land surface and atmosphere into numerical weather or climate prediction. This study describes coupled WRF/Noah model tests to evaluate the model sensitivity and improvement through vegetation fraction (Fg) parameterizations and soil moisture initialization. We utilized the 500 m 8-day Moderate Resolution Imaging Spectroradiometer reflectance data to derive the model Fg parameter using two different methods: the linear and quadric methods. In addition, combining the Fg quadric method, we initialized soil moisture simulated by High-Resolution Land Data Assimilation System, which has been developed for providing better soil moisture data in high spatial resolution by National Center for Atmospheric Research. We performed temporal comparisons of the simulated land surface variables: surface temperature (TS), sensible heat flux (SH), ground heat flux (GH), and latent heat flux (LH) to observed data during 2002 International H₂O Project. Then these results were statistically validated with correlation coefficients and root mean square errors. The results indicate high sensitivity of the coupled model to vegetation fluctuations, showing overestimation of vegetation transpiration and very low variability of GH in highly vegetated area.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

An edited version of this paper was published by AGU. Copyright 2009 American Geophysical Union.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Hong, Seungbum
Lakshmi, Venkat
Small, Eric
Chen, Fei
Tewari, Mukul
Manning, Kevin
Publisher UCAR/NCAR - Library
Publication Date 2009-09-24T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T19:05:27.506907
Metadata Record Identifier edu.ucar.opensky::articles:17465
Metadata Language eng; USA
Suggested Citation Hong, Seungbum, Lakshmi, Venkat, Small, Eric, Chen, Fei, Tewari, Mukul, Manning, Kevin. (2009). Effects of vegetation and soil moisture on the simulated land surface processes from the coupled WRF/Noah model. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7rn395m. Accessed 30 June 2025.

Harvest Source