Electrodynamics of the equatorial evening ionosphere: 2. Conductivity influences on convection, current, and electrodynamic energy flow

We analyze how the evening equatorial plasma vortex and the prereversal enhancement (PRE) of the vertical drift are influenced by the distributions of conductivity in the E and F regions in relation to the wind, through numerical simulations with the thermosphere-ionosphere-electrodynamics general circulation model coupled with the global ionosphere-plasmasphere model. The nightside electric potential satisfies an approximate minimization principle that unifies the connection of the horizontal and vertical components of plasma convection to the wind and conductivity distributions. The relative roles of E and F region conductivities on the convection and current closure are clarified. Evening time F region zonal winds at latitudes that encompass the equatorial ionization anomaly (EIA) region provide the main energy source to drive the convection, including the PRE. The E region helps regulate both the meridional and the zonal convection through drag on the meridional convection associated with Cowling current. For large nighttime E region conductivities, additional drag on the zonal convection comes from the Pedersen conductance. The minimization principle favors meridional plasma inflow to the EIA region from lower rather than higher magnetic apex heights, so long as the E region Cowling conductance is not too large. This upward/poleward inflow maximizes on field lines that traverse the lower F layer near the equatorward edge of the EIA region, producing a PRE with maximum vertical velocity within the equatorial F layer.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2015 American Geophysical Union.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Richmond, Arthur
Fang, T.-W.
Publisher UCAR/NCAR - Library
Publication Date 2015-03-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T19:06:11.412245
Metadata Record Identifier edu.ucar.opensky::articles:16642
Metadata Language eng; USA
Suggested Citation Richmond, Arthur, Fang, T.-W.. (2015). Electrodynamics of the equatorial evening ionosphere: 2. Conductivity influences on convection, current, and electrodynamic energy flow. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7862hn5. Accessed 22 June 2025.

Harvest Source