Evaluating the impact of planetary boundary layer, land surface model, and microphysics parameterization schemes on cold cloud objects in simulated GOES‐16 brightness temperatures

Infrared brightness temperatures (BTs) from the Geostationary Observing Environmental Satellite-16 Advanced Baseline Imager are used to examine the ability of several microphysics and planetary boundary layer (PBL) schemes, as well as land surface models (LSM) and surface layers, to simulate upper-level clouds. Six parameterization configurations were evaluated. Cloud objects are identified using the Method for Object-Based Diagnostic Evaluation (MODE) and analyzed using the object-based threat score, mean-error distance, and pixel-based metrics including the mean absolute error and mean bias error (MBE) for matched objects where the displacement between objects has been removed. Objects are identified using either a fixed BT threshold of 235 K or the 6.5th percentile of BTs for each model configuration. Analysis of the MODE-identified cloud objects shows that, compared to a configuration with the Thompson microphysics scheme, Mellor-Yamanda-Nakanishi-Niino (MYNN) PBL, Global Forecasting System (GFS) surface layer, and Noah LSM, the configuration employing the National Severe Storms Laboratory microphysics produced more cloud objects with higher BTs. Changing the PBL from MYNN to Shin-Hong or Eddy-Diffusivity Mass-Flux also resulted in a slightly lower accuracy, though these changes result in configurations which more accurately reproduced the number of observation cloud objects and slightly reduced the high MBE. Changing the LSM from Noah to RUC reduces forecast accuracy by producing too many cloud objects with too low BTs. As the forecast hour increases, this accuracy reduction increases at a greater rate than occurred when changing the microphysics or PBL scheme and is further enhanced when using the MYNN surface layer rather than the GFS.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2021 American Geophysical Union.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Griffin, Sarah M.
Otkin, Jason A.
Nebuda, Sharon E.
Jensen, Tara L.
Skinner, Patrick S.
Gilleland, Eric
Supinie, Timothy A.
Xue, Ming
Publisher UCAR/NCAR - Library
Publication Date 2021-08-16T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:28:59.970883
Metadata Record Identifier edu.ucar.opensky::articles:24617
Metadata Language eng; USA
Suggested Citation Griffin, Sarah M., Otkin, Jason A., Nebuda, Sharon E., Jensen, Tara L., Skinner, Patrick S., Gilleland, Eric, Supinie, Timothy A., Xue, Ming. (2021). Evaluating the impact of planetary boundary layer, land surface model, and microphysics parameterization schemes on cold cloud objects in simulated GOES‐16 brightness temperatures. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d79s1vgv. Accessed 29 June 2025.

Harvest Source