Forecasts of hurricanes using large-ensemble outputs

This paper describes the development of a model framework for Forecasts of Hurricanes Using Large-Ensemble Outputs (FHLO). FHLO quantifies the forecast uncertainty of a tropical cyclone (TC) by generating probabilistic forecasts of track, intensity, and wind speed that incorporate the state-dependent uncertainty in the large-scale field. The main goal is to provide useful probabilistic forecasts of wind at fixed points in space, but these require large ensembles [O(1000)] to flesh out the tails of the distributions. FHLO accomplishes this by using a computationally inexpensive framework, which consists of three components: 1) a track model that generates synthetic tracks from the TC tracks of an ensemble numerical weather prediction (NWP) model, 2) an intensity model that predicts the intensity along each synthetic track, and 3) a TC wind field model that estimates the time-varying two-dimensional surface wind field. The intensity and wind field of a TC evolve as though the TC were embedded in a time-evolving environmental field, which is derived from the forecast fields of ensemble NWP models. Each component of the framework is evaluated using 1000-member ensembles and four years (2015-18) of TC forecasts in the Atlantic and eastern Pacific basins. We show that the synthetic track algorithm generates tracks that are statistically similar to those of the underlying global ensemble models. We show that FHLO produces competitive intensity forecasts, especially when considering probabilistic verification statistics. We also demonstrate the reliability and accuracy of the probabilistic wind forecasts. Limitations of the model framework are also discussed.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Lin, Jonathan
Emanuel, Kerry
Vigh, Jonathan L.
Publisher UCAR/NCAR - Library
Publication Date 2020-10-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:32:07.553168
Metadata Record Identifier edu.ucar.opensky::articles:23865
Metadata Language eng; USA
Suggested Citation Lin, Jonathan, Emanuel, Kerry, Vigh, Jonathan L.. (2020). Forecasts of hurricanes using large-ensemble outputs. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7q52sxr. Accessed 27 June 2025.

Harvest Source